ICHEP 2022

Contribution ID: 487

Type: Parallel Talk

Precision tests of Quantum Mechanics and CPT symmetry with entangled neutral kaons at KLOE

Thursday, 7 July 2022 18:25 (17 minutes)

The quantum interference between the decays of entangled neutral kaons is a very powerful tool for testing the quantum coherence of the entangled kaon pair state. The studied process $\varphi \to KS \text{ KL} \to \pi + \pi - \pi + \pi - \exp(1 + \pi)$ exhibits the characteristic Einstein–Podolsky–Rosen correlations that prevent both kaons to decay into $\pi + \pi - \pi$ the same time. The newly published result is based on data sample collected with the KLOE detector at DAΦNE and corresponds to an integrated luminosity of about 1.7 fb–1 , i.e. to ~ 1.7 × 10^9 $\varphi \to KS \text{ KL}$ decays. From the fit of the observed time difference distribution of the two kaon decays, the decoherence and CPT violation parameters of various phenomenological models are measured. A stringent upper limit on the branching ratio of the $\varphi \to KSKS$, KLKL decay is also derived. Independently, the comparison of neutral meson transition rates between flavour and CP eigenstates allows direct and model independent tests of time-reversal T and CPT symmetries, through ratios of rates of two classes of processes: $K_S K_L \to \pi^{\pm} e^{\mp} \nu$, $3\pi^0$ and $K_S K_L \to \pi^+ \pi^-$, $\pi^{\pm} e^{\mp} \nu$. In addition to this a straightforward extension to the case of CPT symmetry was performed providing us with the first model independent test of CPT symmetry violation in transitions of neutral kaons.

In-person participation

Yes

Primary author: CZERWIŃSKI, Eryk (Institute of Physics, Jagiellonian University)
Presenter: CZERWIŃSKI, Eryk (Institute of Physics, Jagiellonian University)
Session Classification: Quark and Lepton Flavour Physics

Track Classification: Quark and Lepton Flavour Physics