

Λ_c^+ decays at BESIII

Cong GENG

Sun Yat-sen University

On behalf of BESIII Collaboration

Outline

- BESIII experiment
- * Λ_c^+ history at BESIII
- Interesting physics
- * Advantage of Λ_c^+ study at BESIII
- ✤ Study of Λ⁺_c → $n\pi^+$
- * Prospect of Λ_c^+ at BESIII

BESIII Experiment

Λ_c^+ history at BESIII

Charmed baryon Λ_c^+

■ LHCb observed doubly charm baryon Ξ_{cc}^{++} with $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$ decays.

 Λ_c^+ is lowest-lying charmed bayron: Important for the higher mass charmed baryon and bottomed baryon

Interesting Physics for $\Lambda_c^+ ightarrow n\pi^+$

[1]: L. L. Chau and H. Y. Cheng, Phys. Rev. Lett. 56, 1655 (1986).[2]: K. Yoji, Phys. Rev. D. 44, 2799 (1991).

Importance of experimental results

Λ_c^+	$\mathrm{SU}(3)_f$	Cheng et al.	Our work	Expt.	
$10^4 \mathcal{B}_{\Sigma^+ K^0}$	10.5 ± 1.4	14.4	19.1 ± 4.8		
$10^4 \mathcal{B}_{\Sigma^0 K^+}$	5.2 ± 0.7	7.2	5.5 ± 1.6	5.2 ± 0.8	
$10^4 \mathcal{B}_{p\pi^0}$	$1.1^{+1.3}_{-1.1}$	1.3	$0.8\substack{+0.9 \\ -0.8}$	0.8 ± 1.4	
$10^4 \mathcal{B}_{p\eta}$	11.2 ± 2.8	12.8	11.4 ± 3.5	12.4 ± 3.0	
$10^4 \mathcal{B}_{p\eta'}$	24.5 ± 14.6		7.1 ± 1.4		
$10^4 \mathcal{B}_{n\pi^+}$	7.6 ± 1.1	0.9	7.7 ± 2.0		
$10^4 \mathcal{B}_{\Lambda^0 K^+}$	6.6 ± 0.9	10.7	5.9 ± 1.7	6.1 ± 1.2	

Singly Cabibbo suppressed decays

Ref: J. High Energy Phys. 02 (2020) 165

Latest experimental results

Lack of observation

- Challenge: Small branching fractions of 10⁻³ or below
- Input more precise results from experimental studies
- $\mathcal{B}(\Lambda_c^+ \to n\pi^+)/\mathcal{B}(\Lambda_c^+ \to p\pi^0)$, test different models: SU(3) flavor symmetry, pole model and current-algebra, topological-diagram approach, etc

Advantage of Λ_c^+ study at BESIII

Double-tag approach

$$N_{i\,ST} = 2N_0 \times \mathcal{B}_i \times \varepsilon_{i\,ST}$$

$$N_{is DT} = 2N_0 \times \mathcal{B}_i \times \mathcal{B}_s \times \varepsilon_{is DT}$$

$$\mathcal{B}_{s} = \frac{\Sigma N_{is DT}}{\Sigma N_{i ST} \times \varepsilon_{is DT} / \varepsilon_{i ST}}$$

- $N_{i ST}$: The yields in the *i* singly tagged(ST) mode.
- $\varepsilon_{i ST}$: The efficiency in the *i* singly tagged(ST) mode.
- $N_{is DT}$: The signal yields in the *i* singly tagged(ST) mode.
- $\varepsilon_{is DT}$: The signal efficiency in the *i* singly tagged(ST) mode.
- N_0 : The number of $\overline{\Lambda}_c^- \Lambda_c^+$ production.
- \mathcal{B}_s : The branching fraction of the signal decay.

Λ_c^+ tagging

Phys. Rev. Lett. 128 (2022) 142001

✓ 10 singly tagged modes at BESIII

 $\checkmark N_{ST} = 90692 \pm 359$ with 10 tags @ 4.612-4.699 GeV

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2/c^4 - |\vec{p}_{\overline{\Lambda}_c}|^2/c^2}$$

- E_{beam} is the beam energy.
- $\vec{p}_{\overline{\Lambda}_c}$ is the momentum of the $\overline{\Lambda}_c$ candidate.

Study of $\Lambda_c^+ ightarrow n\pi^+$

$$M_{\rm rec}^2 = (E_{\rm beam} - E_{\pi^+})^2 / c^4 - |\rho \cdot \vec{p}_0 - \vec{p}_{\pi^+}|^2 / c^2$$

•
$$E_{\pi^+}$$
 and \vec{p}_{π^+} are the energy and momentum of π^+ candidate
• $\rho = \sqrt{E_{\text{beam}}^2/c^2 - m_{\Lambda_c^+}^2 c^2}$

•
$$\vec{p}_0 = -\vec{p}_{\bar{\Lambda}c} / |\vec{p}_{\bar{\Lambda}c}|$$
 is the unit direction opposite to the ST $\bar{\Lambda}_c^-$

Energy-momentum conservation !

✓ Select the signal pion after reconstructing the ST Λ_c⁻.
 ✓ Require no charged tracks from the missing part.
 ✓ Extract the yields from the invariant mass of the missing part.

Study of $\Lambda_c^+ ightarrow n\pi^+$

Decay	Yields	Branching fraction
$\Lambda_c^+ \to n\pi^+$	50 ± 9	$(6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4}$
$\Lambda_c^+\to\Lambda\pi^+$	376 ± 22	$(1.31 \pm 0.08_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-2}$
$\Lambda_c^+\to \Sigma^0\pi^+$	343 ± 22	$(1.22 \pm 0.08_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-2}$

 $\frac{\mathbf{R} = \mathcal{B}(\Lambda_c^+ \to n\pi^+)/\mathcal{B}(\Lambda_c^+ \to p\pi^0)}{\checkmark \text{ Use } \mathcal{B}(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5} \text{ at } 90\% \text{ C.L. of}}$ Belle from Phys. Rev. D 103, 072004 (2021)

R

> 7.2 at 90% C.L.

Phys. Rev. Lett. 128 (2022) 142001

Comparison to theory

Decay	Yields	Branching fraction this work
$\Lambda_c^+ \to n\pi^+$	50 ± 9	$(6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4}$
R		> 7.2 at 90% C.L.

$\mathcal{B}(\Lambda_c^+ \to n\pi^+) \times 10^{-4}$	R	Reference
4	2	PRD 55, 7067 (1997)
9	2	PRD 93, 056008 (2016)
11.3 ± 2.9	2	PRD 97, 073006 (2018)
8 or 9	4.5 or 8.0	PRD 49, 3417 (1994)
2.66	3.5	PRD 97, 074028 (2018)
6.1 <u>+</u> 2.0	4.7	PLB 790, 225 (2019)
7.7 <u>+</u> 2.0	9.6	JHEP 02 (2020) 165

✓ For the branching fraction of $\Lambda_c^+ \rightarrow n\pi^+$ and the ratio, it is contradictory between our measurement and these references.

The branching fraction is consistent with our
result but the ratio is contradictory with it.

✓ The branching fraction and ratio are consistent with our results, but the uncertainty of $\mathcal{B}(\Lambda_c^+ \to p\pi^0)$ is about 100%.

Prospect: hadronic decays

- For the hint of
$$\Lambda_c^+ \to p\pi^0$$
 -

DT Method

- Λ⁺_c → pπ⁰ ~5 events, input Br = 1×10⁻⁴
 With MC simulation ~3σ significance
- Sensitive in different models like $SU(3)_F$ Provide new results about $\rightarrow R = \mathcal{B}(\Lambda_c^+ \rightarrow n\pi^+)/\mathcal{B}(\Lambda_c^+ \rightarrow p\pi^0)$

Measurement of
$$\Lambda_c^+ \to p\eta$$

ST Method More precise input.

For the hint of $\Lambda_c^+ \to p\eta'$. DT Method

• Use ~0.5 fb⁻¹ data in 2014 $\mathcal{B}(\Lambda_c^+ \to p\eta) = (1.24 \pm 0.28_{\text{stat.}} \pm 0.10_{\text{syst.}}) \times 10^{-3}$ • Expect $\sigma_{\text{stat.}}: 0.28 \Rightarrow \sim 0.1$

- Dominant decay modes, $\eta' \rightarrow \pi^+\pi^-\eta$ and neutral modes of η as missing in the selections With MC simulation ~4 σ significance

Prospect: semi-leptonic decays

Prospect: inclusive decays

	Inclusive mod	es	$- \text{Measurement of } \overline{\Lambda}_c^- \to \overline{n} + X \bullet$	Challenge:
Г ₇₄ Г ₇₅ Г ₇₆ Г ₇₇ Г ₇₈ Г ₇₉	e ⁺ anything p anything n anything Λ anything K ⁰ _S anything 3prongs	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Use DT method. Thousands of candidates from MC simulation	consistency between data and MC for \overline{n} .
F n p a	From PDG, in the inclust nodes, the precision ~ 32 p + anything and $n +nd \sim 9\% for e^+ + anyt$	sive 2% for anything hing.	Measurement of $\Lambda_c^+ \to X + e^+ \nu_e$ Use DT method.	• Improve the precision

More information: Future Physics Programme of BESIII (Chinese Physics C Vol. 44, No. 4 (2020) 040001)

Summary

- ✓ In 2022, $\Lambda_c^+ \rightarrow n\pi^+$ is measured for the first time at BESIII with 3.8 fb⁻¹ data between $\sqrt{s} = 4.6$ and 4.7 GeV: Phys. Rev. Lett. 128 (2022) 142001
- $> \mathcal{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4} \text{ with a statistical significance of 7.3 } \sigma.$
- $\succ \quad R(\Lambda_c^+ \to n\pi^+/\Lambda_c^+ \to p\pi^0) > 7.2 \text{ at } 90\% \text{ C.L.}$

 \checkmark The results disagree with most of the predictions.

✓ More results of Λ_c will come very soon.

Thanks for your attention!

Backup

Data collected at BESIII

Data sets collected so far include,

- $> 10 \times 10^9 J/\psi$ events
- $\geq 0.5 \times 10^9 \, \psi'$ events
- Scan data [2.0, 3.08] GeV; [3.735, 4.600] GeV
 130 energy points, about 2.0 fb⁻¹
- Large data sets for XYZ study above 4.0 GeV about 20 fb⁻¹

Unique data sets at open charm thresholds

 $\begin{array}{rl} 3.77\,{\rm GeV} & 2.93\,{\rm fb}^{-1} \ D\bar{D} \\ \\ 4.008\,{\rm GeV} & 0.48\,{\rm fb}^{-1} \ D_s^+ D_s^- \\ \\ 4.18\,{\rm GeV} & 3.2\,{\rm fb}^{-1} \ D_s D_s^* \\ \\ 4.6-4.7\,{\rm GeV} & 0.6+{\color{black}{3.8}}\,{\rm fb}^{-1} \ \Lambda_c^+ \bar{\Lambda}_c^- \end{array}$

