ATLAS results on charmonium and B meson production and decays Marcella Bona (QMUL) on behalf of the ATLAS collaboration 41st International Conference on High Energy Physics #### b quarks in ATLAS - 25 fb⁻¹ in Run 1, and 139 fb⁻¹ in Run 2 - Has access to all B hadrons - B, B_s, B_c, Λ _b, etc. - Focus mostly on final states with muons - Typical trigger: di-muons with p_T thresholds at 4, 6 and 11 GeV - In 2018, a di-electron high-level trigger implemented and being analysed now - □ Properties of b-quark fragmentation to $B^{\pm} \rightarrow J/\psi K^{\pm}$ in Run 2 - arXiv:2108.11650, JHEP 12 (2021) 131 - Measurement of relative B_c⁺ /B⁺ production in Run 1 - arXiv: 1912.02672, PRD 104 (2021) 012010 - Production cross section of J/ ψ and ψ (2S) at high p_T - ATLAS-CONF-2019-047 - Study of B_c^+ → J/ψ D_s decays in Run 2 - arXiv:2203.01808, CERN-EP-2022-025 ## Properties of b-quark fragmentation to $B^{\pm} \rightarrow J/\psi K^{\pm}$ Run-2 result: arXiv:2108.11650, JHEP 12 (2021) 131 arXiv:2108.11650 JHEP 12 (2021) 131 - 139 fb⁻¹ of Run-2 data - b-fragmentation functions provide: - Test of QCD at LHC energy; MC tunes - H → bb and many other channels with b-jet signatures dominant uncertainty ullet We measure longitudinal (z) and transverse (p_T^{rel}) projections of the B[±] momentum to jet axis. $$z = rac{ec{p}_J \cdot ec{p}_B}{\left|ec{p}_J ight|^2}; \qquad p_T^{\mathrm{rel}} = rac{\left|ec{p}_J imes ec{p}_B ight|}{\left|ec{p}_J ight|}$$ - ightharpoonup B[±] mesons are associated to jets if they are within $\Delta R = 0.4$ from jet axis. - B[±] invariant mass is used to extract differential cross section in each z or p_T^{rel} bins, for jet momentum bins: $50 \text{ GeV} < p_T < 70 \text{ GeV}$, $70 \text{ GeV} < p_T < 100 \text{ GeV}$ and $p_T > 100 \text{ GeV}$. arXiv:2108.11650 JHEP 12 (2021) 131 Describe Problem Pro - ullet lower tails of z distributions contain larger fraction of data at high p_T - gluon splitting has larger probability at higher p_T values \rightarrow b quarks in the same jet and B meson from fragmentation of one b \rightarrow leading to smaller values of z and higher values of p_T^{rel} arXiv:2108.11650 JHEP 12 (2021) 131 Description Problem - All Pythia fragmentation models give a decent description. - ullet Herwig7 with dipole parton shower overestimates the low z tail at low p_T - larger fraction of jets arising from gluon splittings - Sherpa (mainly cluster hadronisation model) differs for very high z arXiv:2108.11650 JHEP 12 (2021) 131 Description Problem - All Pythia fragmentation models give a decent description. - ullet Herwig7 with dipole PS overestimates for p_T^{rel} in [1.5, 4.0] GeV at low p_T - ullet Sherpa (mainly cluster HM) discrepant for low values of p_T^{rel} , gets worse for higher jet p_T . arXiv:2108.11650 JHEP 12 (2021) 131 \circ test of scale dependence: average values of the longitudinal profile <z> and of the transverse profile <p_rel> as a function of the jet p_ - \circ Pythia (A14*) predicts slightly larger $\langle z \rangle$ and slightly lower $\langle p_T^{rel} \rangle$ - Both Herwig7 discrepant at 15-20% level in <p_T^{rel}> profile - \circ Sherpa (cluster) disagreeing at 10% to 25% for $< p_T^{rel} >$ Run-1 result: arXiv: 1912.02672, PRD 104 (2021) 012010 arXiv: 1912.02672, PRD 104 (2021) 012010 - ullet B_c⁺ produced via collinear double-heavy quark production bb and cc - unique insight into heavy-quark hadronisation - very wide ranges in theoretical predictions - In Run-1 data at 8 TeV, we measure the ratio: $$\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi \pi^{\pm})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psi K^{\pm})}$$ arXiv: 1912.02672, PRD 104 (2021) 012010 ○ Cross section ratio in entire fiducial volume $p_T(B) > 13$ GeV, |y(B)| < 2.3 $$\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi \pi^{\pm})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psi K^{\pm})} = (0.34 \pm 0.04(\text{stat.})^{+0.06}_{-0.02}(\text{syst.}) \pm 0.01 \text{ (lifetime)})\%$$ - Oross section ratio in bins of $p_T(B)$ and |y(B)| - With $p_T(B)$, the B_c^+ production decreases faster than B^+ - No obvious dependence on |y(B)| The points correspond to individual $p_T(B)$ or |y(B)| bins. Shaded areas show result in the entire fiducial volume. Black - statistical uncertainties, red - statistical and systematic uncertainties. arXiv: 1912.02672, PRD 104 (2021) 012010 Cross section ratio in entire fiducial volume $p_T(B) > 13$ GeV, |y(B)| < 2.3 $\frac{\sigma(B_c^{\pm}) \cdot \mathcal{B}(B_c^{\pm} \to J/\psi \pi^{\pm})}{\sigma(B^{\pm}) \cdot \mathcal{B}(B^{\pm} \to J/\psi K^{\pm})} = (0.34 \pm 0.04(\text{stat.})^{+0.06}_{-0.02}(\text{syst.}) \pm 0.01 \text{ (lifetime)})\%$ - Oross section ratio in bins of $p_T(B)$ and |y(B)| - With $p_T(B)$, the B_c^+ production decreases faster than B^+ - No obvious dependence on |y(B)| | Measurement | $p_{T}(B)$ | <i>y</i> (<i>B</i>) | B_c^+/B^+ Ratio [%] | |-------------|---------------------|-----------------------|---| | LHCb 8 TeV | < 20 GeV | 2.0 - 4.5 | $(0.683 \pm 0.018 \pm 0.009)$ | | CMS 7 TeV | > 15 GeV | < 1.6 | $(0.48 \pm 0.05 \pm 0.03 \pm 0.05)$ | | ATLAS | $13-22\ \text{GeV}$ | < 2.3 | $(0.44 \pm 0.07 \pm ^{+0.09}_{-0.04} \pm 0.01)$ | | ATLAS | > 22 GeV | < 2.3 | $(0.24 \pm 0.04 \pm ^{+0.05}_{-0.01} \pm 0.01)$ | LHCb: arXiv:1411.2943, Phys. Rev. Lett. 114, 132001 (2015) CMS: arXiv:1410.5729, JHEP 01 (2015) 063 # Production cross section of J/ ψ and ψ (2S) at high p_T Run-2 result: ATLAS-CONF-2019-047 ATLAS-CONF-2019-047 - ullet This analysis broadens the scope of comparison between experiment and theory by adding a high p_T selection on the quarkonium this is expected to improve discrimination among competing models* of vector charmonium production. - ATLAS has measured: - double differential production cross sections of J/ ψ and ψ (2S) through their decays to $\mu^+\mu^-$. - prompt and non-prompt cross sections separately for both states. - for each state, the ratio of non-prompt to total (i.e. fraction of non-prompt). - for both prompt and non-prompt, the production ratios of ψ(2S) relative to J/ψ. - Measured cross sections compared to predictions from FONLL model**, waiting for NRQCD predictions for high-p_T charmonium production. ^{*} G. Li et al., PRD 83 (2011) 014001; J.P. Lansberg and C. Lorce, Phys. Lett. B 726 (2013) 218; B. Gong et al., JHEP 03 (2013) 115; M. Song et al., JHEP 02 (2011) 071; M. Butenschoen and B.A. Kniehl, Nucl. Phys. Proc. Suppl. 222-224 (2012) 151. ^{**} FONLL (Fixed Order + Next-to-Leading Logarithms): M. Cacciari et al., JHEP 0103 (2001) 006; M. Cacciari et al., JHEP 1210 (2012) 137 ATLAS-CONF-2019-047 - Single muon trigger with threshold p_T > 50 GeV. - \circ J/ψ and ψ(2S) reconstructed via their decays to $\mu^+\mu^-$. - At least one muon must have $p_T > 52.5$ GeV. - Sort data into (12 intervals in muon p_T) × (3 intervals in muon |y|). - O In each bin, extract yields N_{prompt} and $N_{non-prompt}$ from 2-dimensional unbinned max likelihood fit in dilepton mass m(μμ) and pseudo-proper decay time τ - Compute double-differential cross section - A is acceptance, C is correction: $$\frac{d^{2}\sigma^{P,NP}(pp \to \psi)}{dp_{T}dy} \times \mathcal{B}(\psi \to \mu^{+}\mu^{-}) = \frac{1}{\mathcal{A}(\psi)} C_{BM} C_{AP} \frac{N_{\psi}^{P,NP}}{\Delta p_{T} \Delta y \int \mathcal{L}dt}$$ \bigcirc And non-prompt fractions and production ratios of $\psi(2S)$ over J/ ψ : $$F_{\psi}^{\text{NP}}(p_{\text{T}}, y) = \frac{N_{\psi}^{\text{NP}}}{N_{\psi}^{\text{P}} + N_{\psi}^{\text{NP}}}.$$ $$R^{\mathrm{P,NP}}(p_{\mathrm{T}},y) = \left(\frac{\mathcal{A}(\psi(2\mathrm{S}))}{\mathcal{A}(J/\psi)}\right)^{-1} \frac{N_{\psi(2\mathrm{S})}^{\mathrm{P,NP}}}{N_{J/\psi}^{\mathrm{P,NP}}}$$ ATLAS-CONF-2019-047 - Example results: - Similar p_T dependence for prompt and non-prompt cross sections - Non-prompt fraction close to constant in this p_T range A scaling factor of 1, 10, 100 is applied for visual clarity to the rapidity slices |y|<0.75, 0.75<|y|<1.5, 1.5<|y|<2.0, respectively ATLAS-CONF-2019-047 - Example results: - ullet Predictions at FONLL for non-prompt production are consistent with measurement at the low end of p_T , but exceed the data at high p_T . ATLAS-CONF-2019-047 Detween this ATLAS result for prompt J/ψ in θ 10³ the central rapidity range, and the CMS measurement in the closest-matching rapidity range. Both sets of data are fitted to \sim (b+p_T)⁻ⁿ for b = 4.40 ± 2.33 and and n = 5.91 ± 0.27, Run-2 result: arXiv:2203.01808, CERN-EP-2022-025 19 arXiv:2203.01808 CERN-EP-2022-025 - Observed earlier by LHCb (PRD 87 (2013) 112012) and ATLAS (EPJC 76 (2016) 1) in Run 1. - Using entire Run 2 dataset: aiming at more precise measurement of branching fractions and the final state polarisation - Testing predictions of various theory models, e.g. pQCD calculation, relativistic potential models, sum rules calculations.. - ⊃ The B_c^+ → $J/\psi D_s^{*+}$ decay → pseudoscalar into two vector states, hence described in terms of three helicity amplitudes: A_{++} , A_{00} and A_{--} , - the indices correspond to the helicities of the J/ ψ and D_s*+ mesons - A_{++} and A_{--} amplitudes are the $A_{\pm\pm}$ component and correspond to the J/ψ and D_s^{*+} transverse polarization. - \bullet The fraction, $\Gamma_{\pm\pm}$ / Γ is also measured. arXiv:2203.01808 CERN-EP-2022-025 - \circ D_s⁺ and D_s*+ are reconstructed from their decays: - D_s⁺ → ϕ (K⁺K⁻) π ⁺ - D_s*+ → D_s+ π ⁰/γ (soft, not reco) - Use B_c^+ → $J/\psi \pi^+$ reference channel for BR measurement - ⊃ Fiducial range: p_T (B_c^+) > 15 GeV, $|η(B_c^+)|$ < 2.0 Reference channel with signal statistics $N(B^+ \to J/\psi \pi^+) = 8440 \ ^{+550}_{-470} \ \ ^{9}{47}$ - 2D fit to extract the signal parameters - $m(J/\psi D_{s}^{+})$ and the J/ψ helicity angle - Doth sensitive to polarisation of the final state particles J/ψ and D_s^+ in $B_c^+ → J/ψ D_s^{*+}$ decay. arXiv:2203.01808 CERN-EP-2022-025 - Total yields - N (B_c^+ → J/ ψD_s^+) = 241 ± 28 (stat) - O N (B_c⁺ → J/ψD_s*+) = 424 ± 46 (stat) Left: fit to inv. mass m(J/ ψ D_s⁺). Right: fit to |cos θ '(μ ⁺)|, where θ '(μ ⁺) is the helicity angle between μ ⁺ and D_s⁺ momenta, in J/ ψ rest frame. arXiv:2203.01808 CERN-EP-2022-025 ■ Results on the ratios of branching fractions and on the fraction of transverse polarization of the $B_c^+ \rightarrow J/\psi D_s^*$ decay: Uncertainties: (Stat) (syst) (BF) $$R_{D_s^+/\pi^+} \equiv \mathcal{B}(B_c^+ \to J/\psi D_s^+)/\mathcal{B}(B_c^+ \to J/\psi \pi^+) = 2.76 \pm 0.33 \pm 0.30 \pm 0.16$$ $$R_{D_s^{*+}/\pi^+} \equiv \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi \pi^+) = 5.33 \pm 0.61 \pm 0.67 \pm 0.32$$ $$R_{D_s^{*+}/D_s^+} \equiv \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi D_s^+) = 1.93 \pm 0.24 \pm 0.10$$ $$\Gamma_{\pm\pm}/\Gamma(B_c^+ \to J/\psi D_s^{*+}) = 0.70 \pm 0.10 \pm 0.04$$ arXiv:2203.01808 CERN-EP-2022-025 - New results consistent with earlier measurements - ightharpoonup R(D_s*+/ π +) described well by the predictions - ightharpoonup R(D_s+/ π +) and R(D_s++/D_s+) predictions consistently deviate from data - except QCD PM (PRD 61 (2000) 034012) - ightharpoonup $\Gamma_{\pm\pm}/\Gamma$ agrees with a naive spin-counting estimate of 2/3 and larger than predictions - \bigcirc Hatched areas \rightarrow stat uncertainties; yellow bands \rightarrow total uncertainties. #### **Conclusions** - Thanks to accumulated statistical samples - Thanks to some detector performance (tracking) 25 Marcella Bona (QMUL) 26 arXiv:2203.01808 CERN-EP-2022-025 QCD PM: QCD relativistic potential model [arXiv:hep-ph/9909423, Phys. Rev. D 61, 034012 (2000)] QCD SR: QCD sum rules [arXiv:hep-ph/0211021] **CCQM:** covariant confined quark mode [arXiv:1708.09607 [hep-ph], Phys. Rev. D 96, 076017 (2017)] BSW: Bauer-Stech-Wirbel relativistic quark model [arXiv:0810.4284 [hep-ph], Phys. Rev. D 79, 034004 (2009)] **LFQM:** light-front quark mode [arXiv:1307.5925 [hep-ph], Phys. Rev. D 89, 017501 (2014)] **pQCD:** perturbative QCD [arXiv:1407.5550 [hep-ph], Phys. Rev. D 90, 114030 (2014)] RIQM: relativistic independent quark model [Phys. Rev. D 88, 094014 (2013) / arXiv:2202.01167 [hep-ph]] FNCM: calculations in the QCD factorization approach [Int. J. Mod. Phys. A 33, 1850044 (2018), erratum 1892003] | | | arXiv:2203.01808
CERN-EP-2022-025 | |--|--|--------------------------------------| | | Parameter | Value | | | $m_{B_c^+}$ [MeV] $\sigma_{B_c^+}$ [MeV] | 6274.8 ± 1.4 11.5 ± 1.5 | | Parameter Value | $r_{D_S^{*+}/D_S^+} \ f_{\pm\pm}$ | 1.76 ± 0.22
0.70 ± 0.10 | | $m_{B_c^+}$ [MeV] 6274.5 ± 1.5 | $N_{B_c^+ \to J/\psi D_s^+}^{ m DS1}$ | 193 ± 20 | | $\sigma_{B_c^+} [\text{MeV}] \qquad 47.5 \pm 2.5$ $N_{B_c^+ \to J/\psi \pi^+} \qquad 8440^{+550}_{-470}$ | $N_{B_c^+ \to J/\psi D_s^+}^{ m DS2}$ | 49 ± 10 | | | $N_{B_c^+ \to J/\psi D_s^{*+}}^{\mathrm{DS1}}$ | 338 ± 32 | | | $N_{B_c^+ \to J/\psi D_s^+}^{ m DS1\&2}$ | 241 ± 28 | | | $N_{B_c^+ \to J/\psi D_s^{*+}}^{ m DS1\&2}$ | 424 ± 46 | #### Abstract: Recent results from the proton-proton collision data taken by the ATLAS experiment on the charmonium and B meson production and decays will be presented. The measurement of J/ ψ and ψ (2S) differential cross sections will be reported as measured on the whole Run 2 dataset. The measurement of the differential cross sections of B+ production at 13 TeV and their ratios to those measured at 7 TeV will be discussed. The measurement of the differential ratios of B_c+ and B+ production cross sections at 8 TeV will be shown. New results on the B_c decays to J/ ψ D_s(*) final states obtained with the Run 2 data at 13 TeV will also be reported