

Benedetto Giacobbe

On behalf of the ATLAS Collaboration

6-13 07 2022

outline

- Vector Bosons with Heavy Flavors in ATLAS:
 - From the resolved to the boosted regimes
- A new measurement: Z production in association with (b-tagged) large-radius jets
 - The physics case: inclusive and 2 b-tag selection
 - Objects selection and detector level results
 - Going to particle level
 - Results and discussion
- Conclusions

arXiv:2204.12355

The ATLAS Collaboration - "Measurement of cross-sections for production of a Z boson in association with a flavor-inclusive or doubly b-tagged large-radius jet in proton-proton collisions at \sqrt{s} = 13 TeV with the ATLAS experiment"

Z+Heavy Flavors: why exploring the boosted regime

- Relatively larger production of boosted population at 13 TeV wrt 7 TeV
- Boosted jet production in association with Z-boson to reduce QCD background
- Boosted-jet topology sensitive to New Physics: heavy resonances decaying into boosted jets
- Understand background for H->bb (and other heavy resonances) in boosted regime
- Test of our understanding of hard collinear gluon splitting (small bb separation)
 - Description of gluon-splitting into Heavy Quarks (HQ) from Parton Shower (PS) models
 - Slicing of HQ production between ME and PS
- The initial state: how b-quark participate to hard scattering?
 - 4 Flavor Number Scheme: bb only from gluon-splitting in ME
 - 5 Flavor Number Scheme: b-content in the proton PDF (massless approximation)
 - Fusing scheme (4+5FNS): in principle more accurate scheme in all kinematic regions

What do we Know from the Resolved regime? See next slide

Z+b(b): from resolved to boosted regimes

JHEP 07 (2020) 44

 Total cross sections well described by NLO calculations

- 4-FNS largely underestimate ≥1 b-jet production
- Both 4 and 5-FNS describe ≥ 2 b-jet production
- Differential cross section wrt ΔR(bb) well described by NLO SHERPA while large mismodelling in the g-splitting region by MadGraph 4FNS

SHERPA fusing scheme (4+5 FNS) well describe

some (not all) variables:

- Interesting to test in the boosted regime
- Boosted regime test low-ΔR(bb) region dominated by g-splitting

JHEP 07 (2020) 44

Z+large-R jets: object selection and phase-space regions

- Lepton and Z-boson selection:
 - Pairs e[±] (μ[±]) in the calorimeter (muon system) acceptance
 - PID (e/ μ), Isolation, P_T> 27 GeV
 - M_{ℓℓ} > 50 GeV
- Jet selections (phase spaces):
 - 1. Inclusive Large-R jet as a definition of a hadronically decaying high-energy gluon
 - Anti- k_t algorithm with R=1, trimming to suppress PU and UE, $p_T > 200$ GeV (boosted), $|\eta| < 2$ for tracker coverage
 - 2. Large-R jet with 2 b-tagged sub-jets: leading b-quarks in the jet from g->bb splitting
 - Anti- k_t algorithm with R=0.2, matching with tracks pointing to IP and $p_T>10$ GeV, $|\eta|<2.5$
 - b-tagging with MV2c10 algorithm at 70% b-tag efficiency (large rejection of c- and light-jets)
- differential cross section: what we do measure and test
 - Overall kinematics of the large-R jet: M^J and P_T (both inclusive and 2-tag)
 - Z-Jet properties and correlations: $P_T(Z+J)$ and $\Delta \phi(Z,J)$ (inclusive)
 - g->bb splitting properties: ΔR(bb) (2-tag selection)
 - Test of overall scale: total cross-sections from integration of differential ones

From detector to particle level

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

- Dominant background due to tt followed by Z+light-jets
- Detector level comparison to MC:
 - Overestimation and mis-modelling from SHERPA in various kinematic distributions for inclusive selection. Overall underestimation but better modelling in 2-tag selection
 - Unfolding procedure based on *Fully Bayesian Unfolding method* [arXiv:1201.4612]
 - correct for detector's effects (from detector to particle level)
 - obtain detector-independent distributions within acceptance to compare to other experiments & calculations
 - measurement systematics propagated through unfolding

Dominant systematics:

- large-R Jet calibration (both inclusive & 2-tag)
- residual top background (modelling and normalization)
- b-tag efficiency calibration (only 2-tag)

The total cross sections

σ [fb]	Measured	Sherpa 2.2.10	Sherpa 2.2.1	MadGraph5 +Pythia8	MadGraph2.2.2 +Pythia8
MC features		NLO – 4/5/fusing	NLO - 5FNS	NLO – 4/5FNS	LO – 5FNS
σ^{incl} (x10 ³)	2.37±0.28	2.53±1.25	2.37	2.68±0.67	2.84
$\sigma^{2\text{-tag}}$	14.6±4.6	9.4±3.1 (4FNS) 14.9±4.2 (5FNS) 14.3±4.8 (fusing)	9.1	4.4±1.1 (4FNS) 14.4±1.9 (5FNS)	
R= $\sigma^{2-\text{tag}}/\sigma^{\text{incl}}$ [%]	0.62±0.12	0.59±0.39	0.42	0.54±0.21	0.38

- NLO generators well describe the inclusive cross-section
 - Measurement have competitive/smaller uncertainty than calculations (dominated by scale variations)
- Exclusive phase space measurement well reproduced by 5FNS schemes, not by 4FNS. Fusing scheme close to 5FNS
 - Confirm expectation that 5FNS is the best choice for the boosted HF production
- R measurement characterized by cancellation of some uncertainties (2-tag could benefit from full Run-2 statistics)
 - Discriminating power among pQCD models

Inclusive properties of the large-R jet and Z-J system

- Serious mis-modelling of NLO Sherpa's and LO MadGraph in the extreme phase space regions
 - poor description of extra-radiation resulting in larger transverse recoil of jet and J+Z calls for MC tuning
- NLO MadGraph well describes jet kinematics and Z+J correlations

Global properties of 2 b-tag large-R jet

- Statistically limited measurements prevents from strong conclusions
 - Interesting to explore full Run-2 data-set to possibly provide stronger discrimination among models

- 5FNS provide better normalization
 - See total cross section
- Fusing scheme close to 5FNS also in differential distributions
- Rather flat D/MC ratios indicate no major mismodelling issues contrary to inclusive selection

Internal properties of the 2 b-tag large-R jet

- 2 b-tag boosted jets explore low
 ΔR(bb) region (extreme phase space
 In resolved analysis)
- Overall normalization discrepancy observed in total cross section for 4FNS (in particular MGaMC)
- All MC show flat ratios to data (within uncertainties), including MGaMC (4FNS) which gave largest disagreement in resolved analysis

conclusions

- Z production in association with HF is a relevant part of the ATLAS physics program
 - Part of the vast Z/W+jets (or photons) ATLAS program at all energies
- First measurement of Z+jet in the boosted regime and with b-content substructure
 - Explore pQCD in extreme phase-space regions, study b-content in the proton, compare to a variety of state-of-art MC calculations
- Measurements already competitive with MC predictions despite limited statistics (2 b-tag selection): ability to discriminate between models
 - Interesting to explore full Run-2 statistics to boost discrimination power
- NLO calculations together with 5FNS scheme best describe total cross sections and most of measured differential cross sections with some exceptions in extreme regions of the inclusive distributions
 - data-to-MC comparison valuable input for further development of MC tunings

backup

Data and Montecarlo simulations

- pp collisions acquired in early Run-2 (36.1 fb⁻¹ ± 2.1%) @ 13 TeV
 - Single-lepton trigger + DQ + basic event selection
- MC generators/tunings with 5FNS
 - 5FNS Sherpa 2.2.1: with ME 0-2p NLO + 3-4p LO
 - 5FNS MG5_aMC+Py8: with ME 0-4p LO (CKKW-L)

Signal and background simulation, Detector level comparison, unfolding

- NLO SHERPA 2.2.10 with different tunings: 5FNS, 4FNS, fusing variation
- NLO MG5_aMC+Py8 with different tunings: 5FNS, 4FNS

Particle level only: comparison with Unfolded data

unfolding

- Correction from detector to particle level with Fully Bayesian Unfolding method
 - Likelihood of data d given signals σ , nuisances Λ
 - Use pdf priors: flat for signal, Gauss for sys. nuisances
 - Compute posterior by MCMC sampling from $pdf(\sigma, \Lambda)$

$$\mathcal{L}(d|\sigma,\Lambda) = \prod_{i \in \text{recobins}} \text{Poiss}(d_i|x_i(\sigma,\Lambda))$$

$$x_i(\sigma, \Lambda) = L(\Lambda) \times (b_i(\Lambda) + M_{ij}(\Lambda) \sigma_j)$$

luminosity

Truth \triangle R(b,b)

background

response matrix

