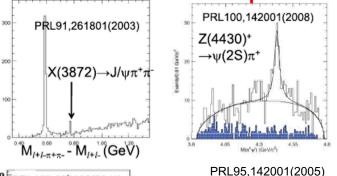


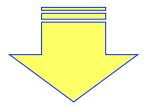
Recent XYZ Results at

Stefano Spataro

on behalf of BESIII Collaboration

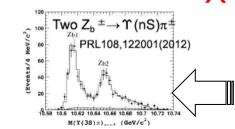

PRL107,091803(2011)

New exotic resonances

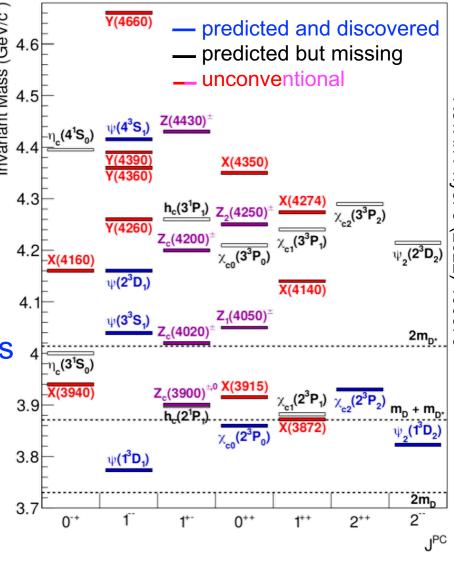


Starting from 2003, in heavy quarkonia, a long list of states not following the conventional

potential model



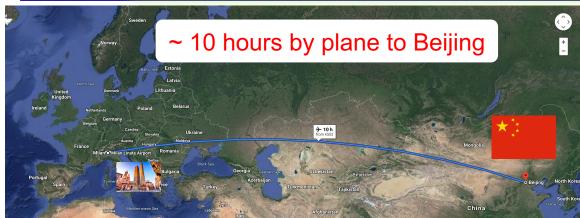
Y – 1⁻ states in e⁺e⁻ collisions

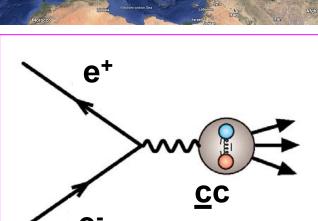


X – all the remaining cases

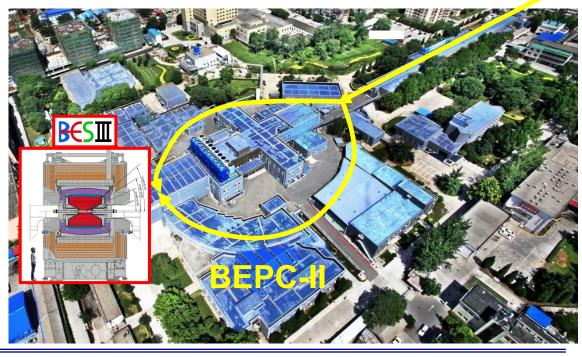
Y(4260) [™]J/ψπ+π-

also in the bottomonium sector




... even if PDG has recently changed the name scheme

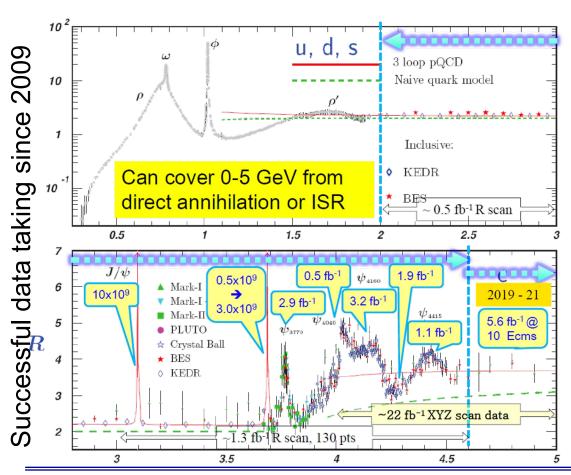
Charmonium(-like) Spectroscopy with BEPC-II and BESIII

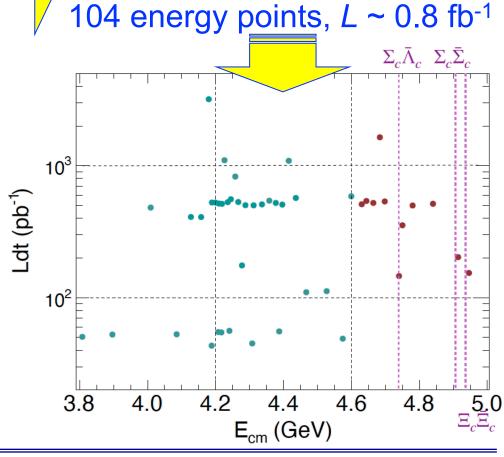


The concept:

Formation of 1⁻⁻ states, which decay into lighter charmonium(-like) states

 E_{CM} = 2-4.6 GeV (2-4.9 GeV from 2019) L_{peak} = 1.0 x 10³³/cm²s⁻¹




BESIII Data Sample

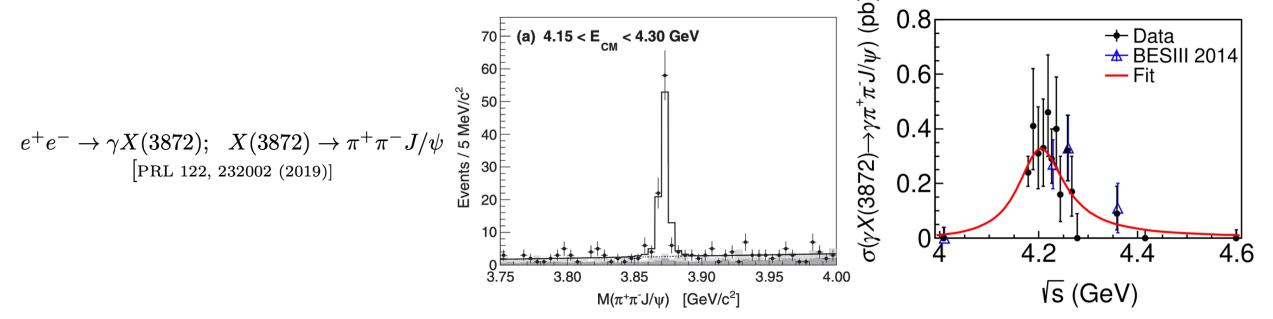
The XYZ search of this talk focus on

46 data samples $L \sim 21.9 \text{ fb}^{-1}$ 29 with $L_i > 0.4 \text{ fb}^{-1}$ Small R scan sample:

Let's start with X(3872) aka $\chi_{c1}(3872)$

 $M_{X(3872)} - M_{D^0D^{*0}} = 0.01 \pm 0.14 MeV$

 $\Gamma_{X(3872)}^{BW} = 0.96^{+0.19}_{-0.18} \pm 0.21 MeV$


The best studied exotic state

What we know so far -

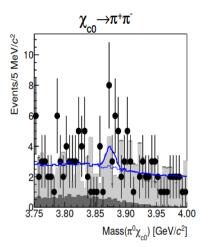
✓ Very close do the D⁰D^{*0} threshold:

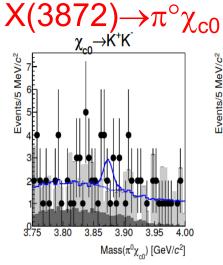
√ Very narrow:

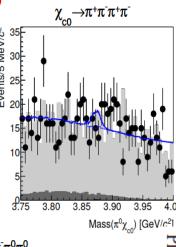
- ✓ Charged partner not found (yet) iso-singlet state?
- ✓ Large isospin breaking $B(X \rightarrow \rho J/\psi) \simeq B(X \rightarrow \omega J/\psi)$
- ✓ Produced in B decays, in hadron collisions, in e⁺e⁻→Y(4230)→γX(3872)?

Favorite interpretation: molecule mixed with charmonium, but other options are not ruled out

Search for X(3872) $\rightarrow \pi^{\circ} \chi_{c0}$ and X(3872) $\rightarrow \pi \pi \chi_{c0}$



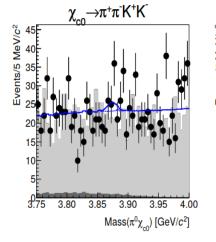

The ratios $\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}$ and $\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^0 \chi_{c1})}$ sensitive to physical interpretation

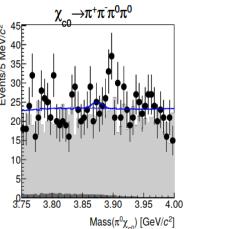

	Interpretation	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}$	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^0 \chi_{c1})}$
1)	Four-quark/molecule		2.97
1)	$\chi_{c1}(2P)$	0.0	0.0
2)	$D^0ar{D}^{0*}$		2.84-2.98
3)	$D^0ar{D}^{0*} + D^+D^{-*}$	1.3-2.07	1.65-1.77
4)	$D^0 ar{D}^{0*} + D^+ D^{-*}$		3.72
5) <u>L</u>	$D^0 \bar{D}^{0*} + D^+ D^{-*} + \chi_{c1}(2P)$	0.094	1.15

1)PRD77,014013(2008) 2)PRD78,094019(2008) 3)EPJC81,193(2021)

⁴⁾PRD79,094013(2009) ⁵⁾PRD100,094025(2019)

REV. D 105, 072009 (2022

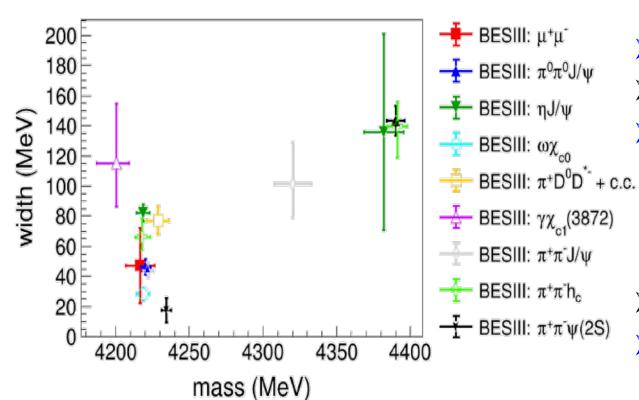

No significant results ($<<3\sigma$)

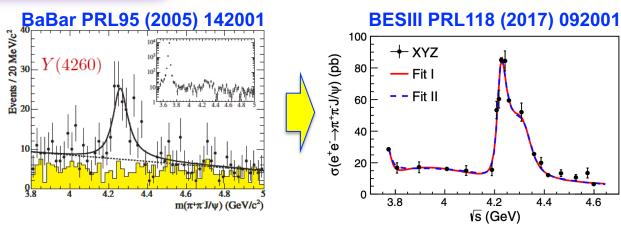

→ Upper limits

New statistics will be collected after BEPC-II upgrade

Ratio	90% C.L. upper limit
$\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})$	3.6
$\overline{\mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi)}$ $\overline{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}$	4.5
$\overline{\mathcal{B}(X(3872) \to \pi^0 \chi_{c1})}$ $\mathcal{B}(X(3872) \to \pi^+ \pi^- \chi_{c0})$	0.56
$\overline{\mathcal{B}(X(3872) \to \pi^+\pi^-J/\psi)}$ $\mathcal{B}(X(3872) \to \pi^0\pi^0\chi_{c0})$	1.7
$\frac{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}$	1./

Moving to Y states

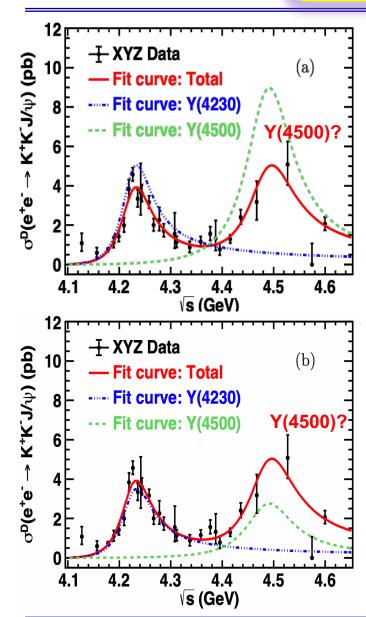



4.2

4.4

Y(4260) firstly seen by BaBar searching for X(3872), afterwards split into two states Y(4230) and Y(4360) by BESIII

...now called $\psi(4230)$ and $\psi(4360)$ by PDG



- ➤ Inconsistent with all 1⁻⁻ quark model states
- > Very suppressed open charm decays
- Candidates for exotic matter
 - Hybrids?
 - Tetraquark?
 - Hadronic molecules?
- Well established
- > Experimentally easy to produce using e⁺e⁻ collisions → Initial State Radiation

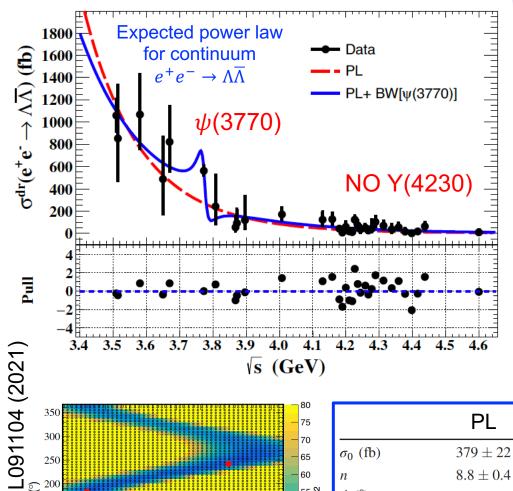
Searching for Y(4230) in $e^+e^- \rightarrow K^+K^-J/\psi$

Investigating the strange content inside Y(4230)

✓ First observation of $Y(4230) \rightarrow K^+K^-J/\psi$ peak

$$0.02 < \frac{\mathcal{B}(Y(4230) \to K^+ K^- J/\psi)}{\mathcal{B}(Y(4230) \to \pi^+ \pi^- J/\psi)} < 0.26$$

- ✓ Resonance Y(4500) > 5 σ , consistent with the predictions of:
 - > 5S-4D mixing scheme (PRD99,114003 (2019))
 - heavy-antiheavy hadronic molecules model (ProgrPhys41,65(2021))
 - Lattice QCD result for a $(cs\bar{c}\bar{s})$ state (PRD73,094510 (2006))


Parameters	Solution I	Solution II		
$M({ m MeV})$	$4225.3\pm2.3\pm21.5$			
$\Gamma_{tot}({ m MeV})$	$72.9\pm6.1\pm30.8$			
$\Gamma_{ee} \mathcal{B}(\mathrm{eV})$	$0.42\pm0.04\pm0.15$	$0.29 \pm 0.02 \pm 0.10$		
$M({ m MeV})$	4484.7 ± 1	13.3 ± 24.1		
$\Gamma_{tot}({ m MeV})$	$111.1\pm\ 30.1\ \pm\ 15.2$			
$\Gamma_{ee} \mathcal{B}(\mathrm{eV})$	$1.35\pm0.14\pm0.06$	$0.41 \pm 0.08 \pm 0.13$		
$arphi(\mathrm{rad})$	$1.72 \pm 0.09 \pm 0.52$	$5.49 \pm 0.35 \pm 0.58$		
	$M(\mathrm{MeV}) \ \Gamma_{tot}(\mathrm{MeV}) \ \Gamma_{ee}\mathcal{B}(\mathrm{eV}) \ M(\mathrm{MeV}) \ \Gamma_{tot}(\mathrm{MeV}) \ \Gamma_{tot}(\mathrm{MeV}) \ \Gamma_{ee}\mathcal{B}(\mathrm{eV})$	$M({ m MeV})$ 4225.3 \pm $\Gamma_{tot}({ m MeV})$ 72.9 \pm 6 $\Gamma_{ee}\mathcal{B}({ m eV})$ 0.42 \pm 0.04 \pm 0.15 $M({ m MeV})$ 4484.7 \pm 1 $\Gamma_{tot}({ m MeV})$ 111.1 \pm 30 $\Gamma_{ee}\mathcal{B}({ m eV})$ 1.35 \pm 0.14 \pm 0.06		

arXiv:2204.07800 submitted to PRL

Searching for Y(4230) in $e^+e^- \rightarrow \Lambda \overline{\Lambda}$

 $B[\psi(3770)\rightarrow\Lambda\overline{\Lambda}] (\times 10^{-5})$

Investigating the charmless decays

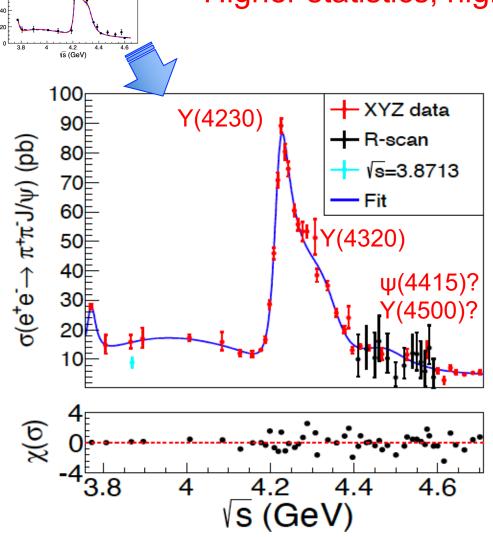
- ✓ No signal for $Y(4230) \rightarrow \Lambda \overline{\Lambda}$
- ✓ First evidence of $\psi(3770) \rightarrow \Lambda \overline{\Lambda}$ with 4.6-4.9σ
 - \triangleright 2.4×10⁻⁶ < BF < 1.8×10⁻⁴ at 90% CL
 - much larger than the prediction based on electronic width scaling (BF $\sim 5 \times 10^{-7}$)

Nature of $\psi(3770)$ still under debate:

- conventional 1D charmonium state
- > 2S+1D mixing?
- tetraquark?

A multi-quark content could explain enhanced decays into light quark systems

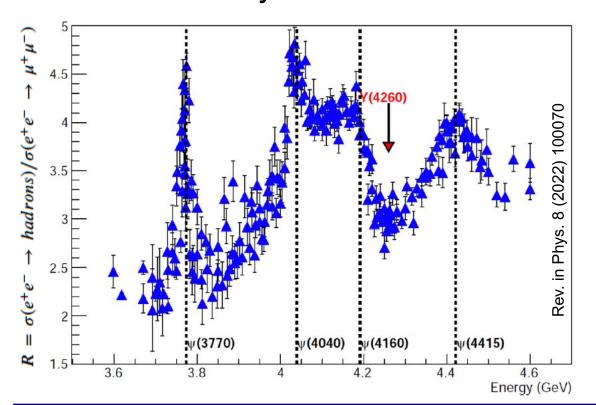
)						
104	350	75 75		PL	PL+BW	$[\psi(3770)]$
91	250	- 70 - 65	σ_0 (fb)	379 ± 22	320	+750 -340
0.	~ 200	- 60	n	8.8 ± 0.4	8.2 =	= 0.6
 - - -		55 %	φ (°)	• • •	183^{+57}_{-40}	240^{+17}_{-115}
04	150	50 45	σ_{ψ} (fb)	0 (fixed)	240^{+1470}_{-190}	1440^{+270}_{-1390}
7	● Best values	40	χ^2/ndof	62.0/31	34.6	5/29
R	50 • Scan points	35	$\mathcal{B} \ (\times 10^{-5})$		$2.4^{+15.0}_{-1.9}$	$14.4^{+2.7}_{-14.0}$
Д	0 here 1 days 10 12 14 16 18	30			1.7	14.0



New measurements of $e^+e^- \rightarrow \pi^+\pi^-I/\psi$

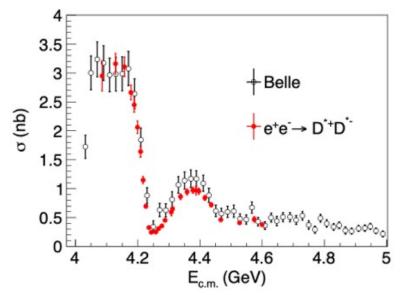
- ✓ Y(4230) and Y(4320) observed with > 10σ
- ✓ Structure around 4 GeV better fit by a BW (before exp)
- ✓ Evidence $\sim 3\sigma$ of a structure at higher energies $\psi(4415)$? The new Y(4500)?
- ✓ By including the high energy state in the fit, the Y(4320) parameters change

```
4221.4 \pm 1.5 \pm 2.0 \text{ MeV/c}^2
M_{Y(4230)}
                      41.8 \pm 2.9 \pm 2.7 MeV
 Y(4230)
```

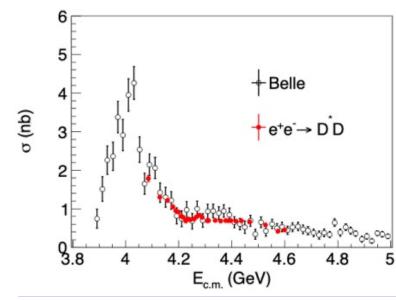

 $4298 \pm 12 \pm 26 \text{ MeV/c}^2$ $M_{Y(4320)}$ $127 \pm 17 \pm 10 \text{ MeV}$ Y(4320)

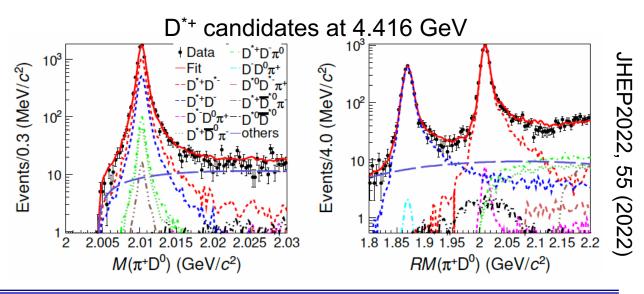
Open charm production

- > Conventional states above threshold match well quark potential model
 - ✓ main decays in open charm mesons
- Charmonium-like states (Y) disagree with quark model
 - ✓ main decay in hidden-charm mesons


Open charm cross section measurements essential to fully understand XYZ states

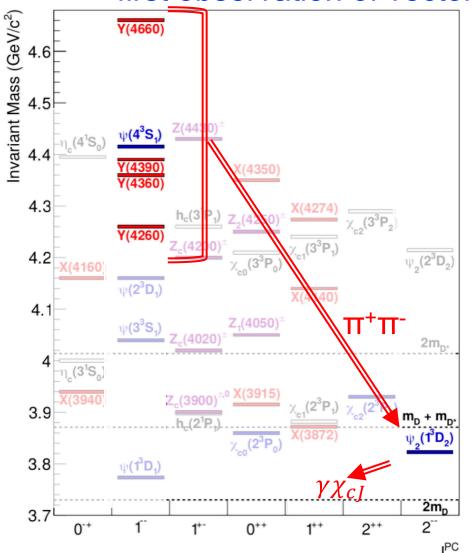
Important input for coupled-channel analysis

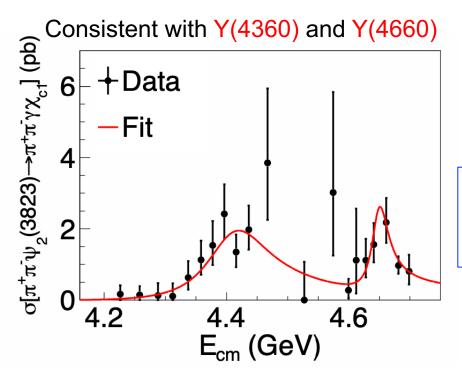

Measurement of $e^+e^- \rightarrow D^{*+}D^{*-}$ and $e^+e^- \rightarrow D^{*+}D^-$ NFN



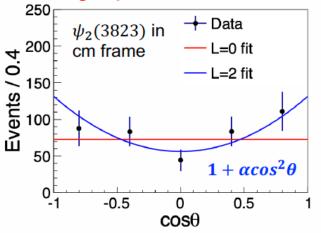
- ✓ Results consistent with Belle BaBar and CLEO and more precise
- The structures in the cross section are confirmed

With the new and more precise data, a simultaneous fit of combined measurements allows to test different hypotheses for the Y(4230) and for the other charmonium(-like) states




Resonance structures in $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$

first observation of vector Y states decaying to D-wave charmonium state

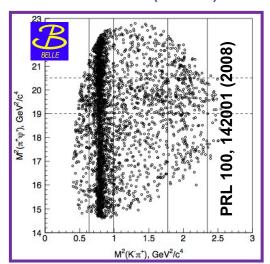

Most precise measurement

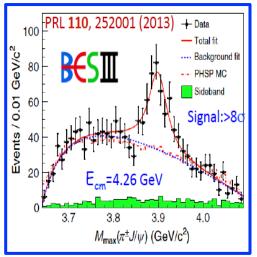
mass and width of $\psi_2(3823)$: $m = 3823.12 \pm 0.43 \pm 0.13 \text{ MeV}/c^2$ $\Gamma < 2.9 \text{ MeV}$ (at 90% CL)

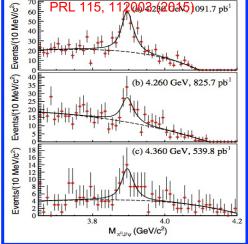
See also poster session:

Yong Xie: Observation of new charmonium decays at BESIII

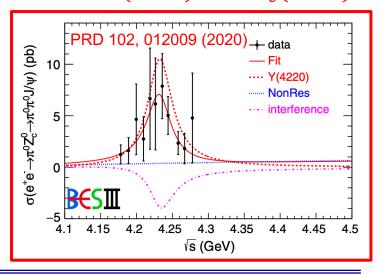
L = 2 slightly favored over L = 0


Moving to Z states


- ✓ Charged non conventional states
- ✓ Produced in e⁺e⁻ collisions and in B decays
- ✓ Decays typically in hadron + charmonium
- ✓ Intrinsic nature unclear exotic states? kinematic effects?
- ✓ Correlated to Y states?

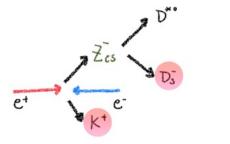

Ctata	M (MaV/a4)	T (MaV)	J^{PO}	Dungana	Erm onim ont
State	$M \left(\mathrm{MeV}/c^2 \right)$	$\Gamma \text{ (MeV)}$		Process	Experiment
$Z_c(3900)^{(\pm,0)}$	3888.4 ± 2.5	28.3 ± 2.5	1+-	$e^+e^- \to \pi^{(+,0)}(\pi^{(-,0)}J/\psi)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)}(D\bar{D}^*)^{(-,0)}$	BESIII
				$H_b \to X \pi^+(\pi^- J/\psi)$	D0
				$e^+e^- \rightarrow \pi^+(\eta_c\rho^-)$	BESIII
$Z_c(4020)^{(\pm,0)}$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- \to \pi^{(+,0)}(\pi^-h_c)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)}(D^*\bar{D}^*)^{(-,0)}$	BESIII
$Z(4050)^{\pm}$	4051^{+24}_{-40}	82^{+50}_{-28}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle
$Z(4055)^{\pm}$ 3.5	$6\sigma 4054 \pm 3.2$	45 ± 13	??-	$e^{+}e^{-} \to \pi^{+}(\pi^{-}\psi(2S))$	Belle
$Z(4100)^{\pm}$ 3.4	$4\sigma 4096 \pm 28$	152^{+80}_{-70}	???	$B^0 \to K^+(\pi^-\eta_c)$	LHCb
$Z(4200)^{\pm}$	4196^{+35}_{-32}	370^{+100}_{-150}	1^{+-}	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle, LHCb
$Z(4250)^{\pm}$	4248^{+190}_{-50}	370^{+100}_{-150} 177^{+320}_{-70}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle
$Z(4430)^{\pm}$	4478_{-18}^{+15}	181 ± 31	1+-	$B^0 \to K^+(\pi^-\psi(2S))$	Belle, LHCb
first/2008				$\bar{B}^0 \to K^-(\pi^+J/\psi)$	Belle
$P_{crit}(4240)$	4220+50	220^{+120}	0	$B^0 \rightarrow K^+\pi^-\psi(2S)$	LHCb
$Z_{cs}(3985)^{\pm}$	$3982.5_{-3.4}^{+2.8}$	$12.8^{+6.1}_{-5.3}$?	$e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$	BESIII
$Z_{cs}(4000)^{\pm}$	4003_{-15}^{+7}	131 ± 30	i l	$B^+ o \phi(J/\psi K^+)$	LHCb
$Z_{cs}(4220)^{\pm}$	4216_{-38}^{+49}	233^{+110}_{-90}	1+	$B^+ \to \phi(J/\psi K^+)$	LHCb

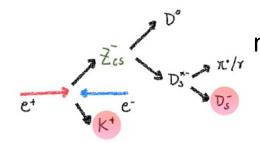
The first: Z(4430)±



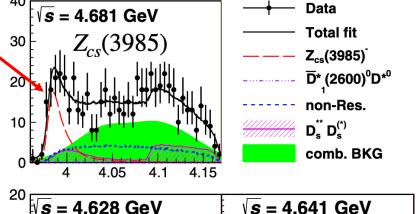
$Z_c(3900)$ isospin triplet

$$e^+e^- \to Y(4230) \to \pi^0 Z_c(3900)^0$$

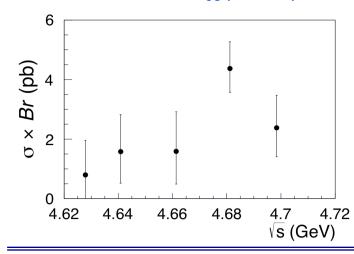

The charged $Z_{cs}(3985)$ state



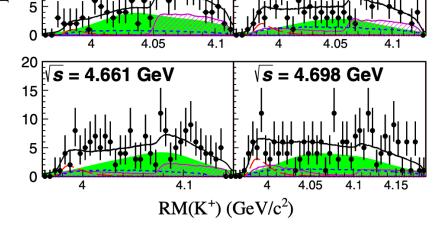
102001


(2021)

$$e^+e^- \to K^+(D_S^-D^{*0} + D_S^{*-}D^0)$$



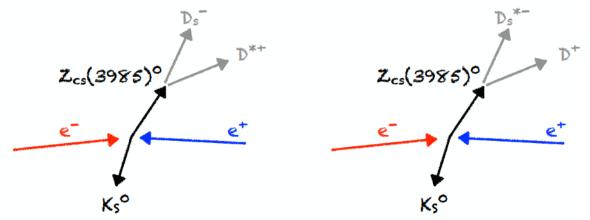
Enhancement not explained by $D_s^{**}D_s^{(*)}$, neither by interference



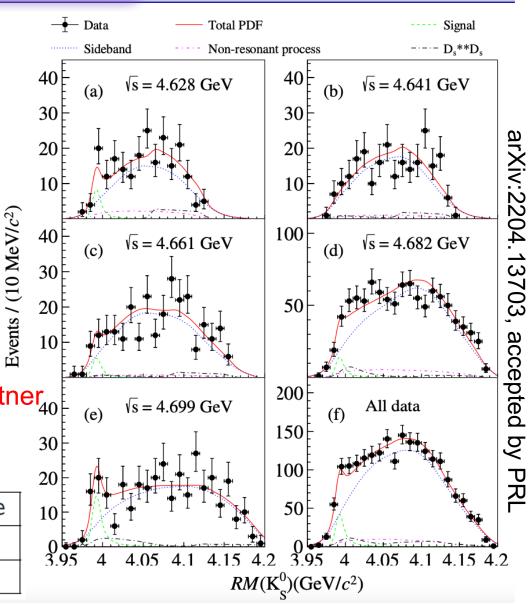
- Added a new resonance in the fit, assuming JP=1+
- Significance: 5.3σ
- ightharpoonup Minimal quark content $c\bar{c}s\bar{u}$?
- \triangleright Similar to $Z_{cs}(4000)$ seen by LHCb (widths differ)

PRL127, 082001 (2021)

Coupling with Y state $e^+e^- \rightarrow Y \rightarrow KZ_{cs}(3895)$?



The neutral $Z_{cs}(3985)$ state

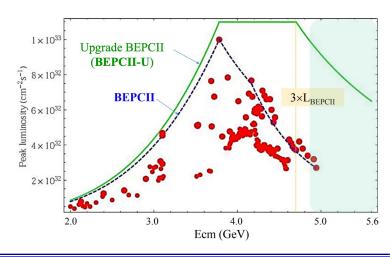

$$e^+e^- \to K_S^0 (D_S^-D^{*+} + D_S^{*-}D^+)$$

- > Significance: 4.6σ
- ightharpoonup Minimal quark content $c\bar{c}s\bar{d}$?
- \blacktriangleright Mass and width consistent with charged $Z_{cs} \rightarrow isospin partner_{40}$

NPB 968, 115450 (2021): M(Z_{cs}⁺)<M(Z_{cs}°)

State	Mass (MeV/ c^2)	Width (MeV)	Significance
$Z_{cs}(3985)^+$	2.0	$13.8^{+8.1}_{-5.2} \pm 4.9$	5.3σ
$Z_{cs}(3985)^0$	$3992.2 \pm 1.7 \pm 1.6$	$7.7^{+4.1}_{-3.8} \pm 4.3$	4.6σ

Trying to summarize



The XYZ Spectroscopy is a key component of the BESIII physics program

- \triangleright Studies of X(3872) continue thanks to the e⁺e⁻ \rightarrow Y(4230) \rightarrow γX(3872) process
- ➤ We continue to map Y structures through exclusive e⁺e⁻ cross sections
- \succ The Z_c family has expanded with the new and strange $Z_{cs}(3985)$ triplet

In the next future crucial upgrades will improve BESIII capabilities

- ➤ Increase in maximum CMS energy
- Increase in integrated luminosity in XYZ region
- ➤ New TOF and CGEM for better performances

