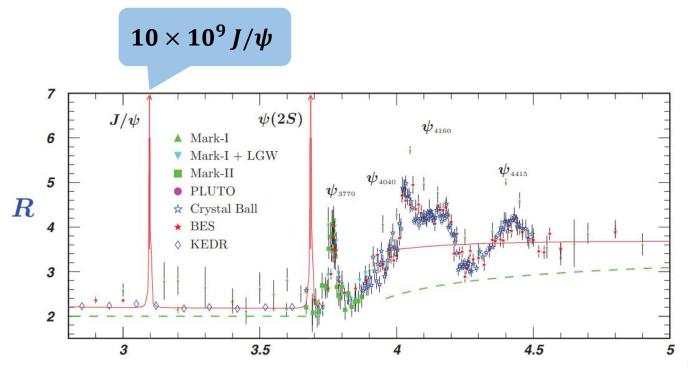


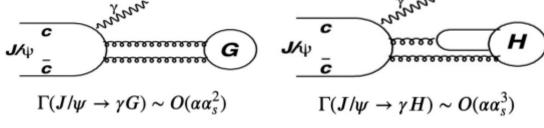
Light Meson Spectroscopy at BESIII

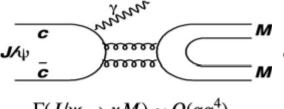
Guoyi Hou

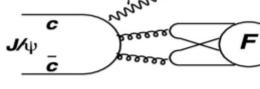
(on behalf of the BESIII Collaboration)


Institute of High Energy Physic, Chinese Academy of Sciences

ICHEP 2022, 6-13 July, Bologna, Italy

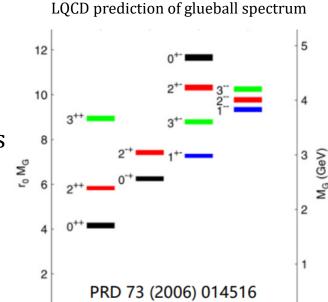

World's Largest τ -charm Data Sets in e^+e^- Annihilation

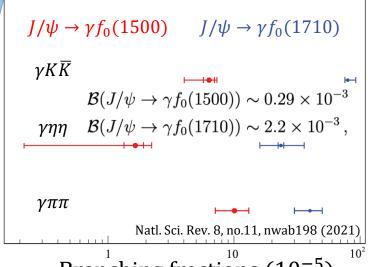

- τ -charm factory $2.0 \le \sqrt{s} \le 4.9 \text{ GeV}$
- Design luminosity: $L_{\psi(3770)} = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$



Ideal lab for light hadron physics

- Clean high statistics data samples
- Well defined initial and final states
 - Kinematic constraints
 - $I(J^{PC})$ filter
- "Gluon-rich" processes $\Gamma(J/\psi \to \gamma G) > \Gamma(J/\psi \to \gamma H) > \Gamma(J/\psi \to \gamma M) > \Gamma(J/\psi \to \gamma F)$

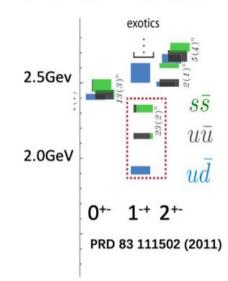


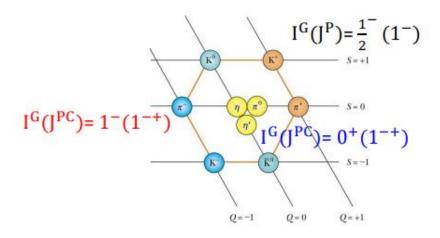


$$\Gamma(J/\psi \to \gamma F) \sim O(\alpha \alpha_s^4)$$

Glueballs

- Low-lying glueballs with ordinary $J^{PC} \rightarrow \text{mixing}$ with $q\bar{q}$ mesons
 - > Systematic studies required
 - \rightarrow out-numbering of quark model (e.g. $f_0(1370) \& f_0(1500) \& f_0(1710)$)
 - > study the production & decay properties
- Scalar glueball expected to have a large production in J/ψ radiative decay: $B(J/\psi \rightarrow \gamma G_{0+}) = 3.8(9) \times 10^{-3} [1]^{LQCD}$
 - Observed $B(J/\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$
 - $\succ f_0(1710)$ largely overlapped with scalar glueball
- **G** $\rightarrow \eta \eta'$ decay is expected to be suppressed
 - SU(3) F symmetry for a pure glueball $\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3: 4: 1: 0: 1$
 - $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$, predicted by Ref. [1]
- $FI/\psi \rightarrow \gamma \eta \eta'$ provides important information





Hybrids

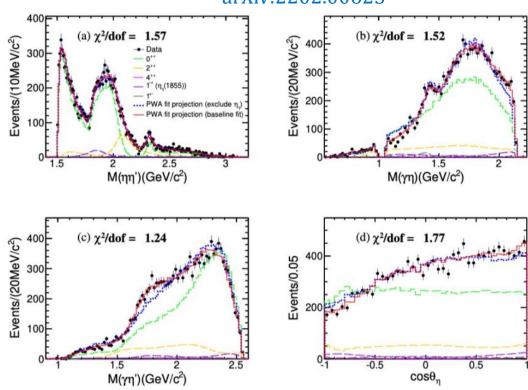
- Low-lying hybrids can have exotic quantum numbers 0^{+-} , 1^{-+} , 2^{+-} , which is forbidden by $q\overline{q}$ configuration
- The exotic $J^{PC} = 1^{-+}$ nonet of hybrids is predicted to be the lightest $(1.7 \sim 2.1 \text{ GeV/c}^2)$
 - Only isovector candidate $\pi_1(1400)$, $\pi_1(1600)$, $\pi_1(2015)$ observed yet
- **Isoscalar 1**⁻⁺ is critical to establish the **hybrid nonet**
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta \eta'$ in P-wave [2][3][4]
- ► Search for Isoscalar 1⁻⁺ in $J/\psi \rightarrow \gamma \eta \eta'$

Lattice QCD Predictions:

Observation of An Exotic Isoscalar State $\eta_1(1855)$ (1^{-+}) in $J/\psi \to \gamma \eta \eta'$

10 billion J/ψ

• The η' is reconstructed from $\gamma \pi^+ \pi^- \& \eta \pi^+ \pi^-$, η from $\gamma \gamma$


arXiv:2202.00621 arXiv:2202.00623

• Partial wave analysis of $J/\psi \to \gamma \eta \eta'$

Quasi two-body decay amplitudes in the sequential decay processes $J/\psi \to \gamma X, X \to \eta \eta'$ and $J/\psi \to \eta X, X \to \gamma \eta'$ and $J/\psi \to \eta' X, X \to \gamma \eta$ are constructed using the **covariant** tensor formalism^[5]

• All kinematically allowed known resonances with 0^{++} , 2^{++} , 4^{++} ($\eta\eta'$) and 1^{+-} , 1^{-+} ($\gamma\eta^{(\prime)}$) are considered 1^{-+} in $\eta\eta'$ is also considered (η/η' not identical particle)

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	Γ (MeV)	$M_{ m PDG}~({ m MeV}/c^2)$	Γ _{PDG} (MeV)	B.F. (×10 ⁻⁵)	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
		1795		1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010\pm6_{-4}^{+6}$	$203\pm9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312\pm7^{+7}_{-3}$	$65\pm10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855\pm9^{+6}_{-1}$	$188\pm18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32\pm0.05^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062\pm6_{-7}^{+10}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9σ

- An isoscalar resonance with exotic $J^{PC} = 1^{-+}$
- > consistent with LQCD calculation for the 1^{-+} hybrid $(1.7 \sim 2.1 \text{ GeV/c}^2)$

Further Checks on the 1⁻⁺ State $\eta_1(1855)$

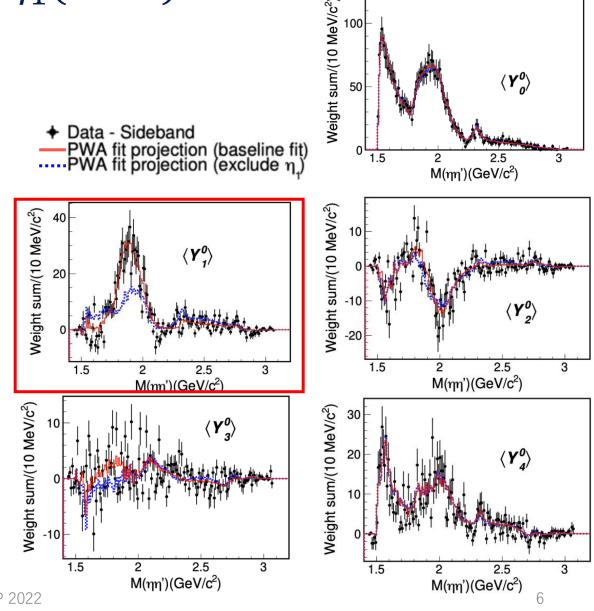
Angular distribution as a function of $M(\eta \eta')$ can be expressed **model-independently** in terms of Legendre polynomial moments N_k

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0 (\cos \theta_{\eta}^i)$$

• **Neglecting** resonance contributions in the $\gamma\eta$ and $\gamma\eta'$ subsystems, the moments are related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in $\eta\eta'$ by:

$$\sqrt{4\pi}\langle Y_0^0 \rangle = S^2 + P^2 + D^2$$

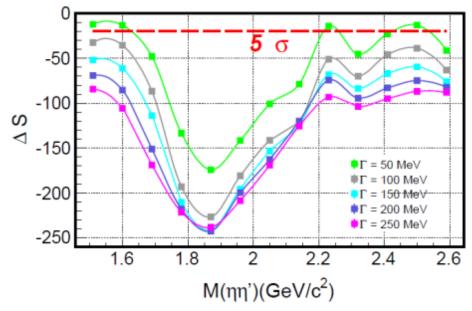
$$\sqrt{4\pi}\langle Y_1^0 \rangle = 2SPcos\phi_P + 4PDcos(\phi_P - \phi_D)$$


$$\langle Y_1^0 \rangle = 0 \text{ without P-wave contribution}$$

$$\sqrt{4\pi}\langle Y_2^0 \rangle = \frac{2}{\sqrt{5}}P^2 + \frac{2\sqrt{5}}{7}D^2 + 2SDcos\phi_D$$

$$\sqrt{4\pi}\langle Y_3^0 \rangle = \frac{6}{5}\sqrt{\frac{15}{7}}PDcos(\phi_P - \phi_D)$$

$$\sqrt{4\pi}\langle Y_4^0 \rangle = \frac{6}{7}D^2$$

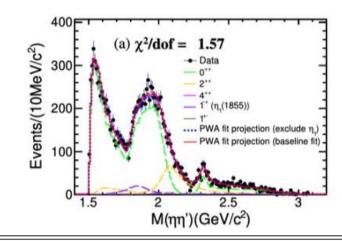

- Narrow structure in $\langle Y_1^0 \rangle$
 - \triangleright Cannot be described by resonances in $\gamma\eta(\eta')$
 - $\eta_1(1855) \rightarrow \eta \eta'$ needed

Further Checks on the 1⁻⁺ State $\eta_1(1855)$

- Change J^{PC} of $\eta_1(1855)$: log-likelihood $\downarrow 235$ $\Rightarrow J^{PC}$ prefer $\mathbf{1}^{-+}$
- Remove BW phase motion of $\eta_1(1855)$: log-likelihood $\downarrow 43$
 - **Resonance structure** needed
- Assuming $\eta_1(1855)$ as additional resonance, evaluate its significance with various masses and widths
 - \triangleright Significant 1⁻⁺ contribution around 1.8 GeV/c² needed
- Systematic uncertainties are studied, and significance of $\eta_1(1855)$ remains larger than 19σ in all cases

significance of $\eta_1(1855)$ with various masses and widths

Discussions about $f_0(1500) \& f_0(1710)$


• Significant $f_0(1500)$

$$\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (8.96^{+2.95}_{-2.87}) \times 10^{-2}$$
consistent with PDG

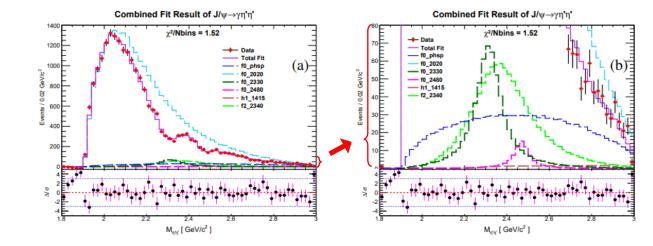
• Absence of $f_0(1710)$

$$\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} < 1.61 \times 10^{-3} @90\% C.L.$$

- > Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar (0^{++}) glueball
 - Scalar glueball expected to be suppressed in $\eta \eta'$: $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

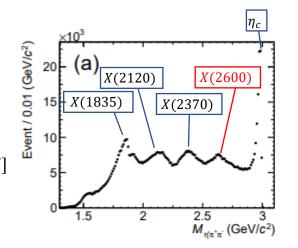
Decay mode	Resonance	$M ({\rm MeV}/c^2)$	$\Gamma \ (\text{MeV})$	$M_{ m PDG}~({ m MeV}/c^2)$	$\Gamma_{\rm PDG}~(MeV)$	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11\pm0.01^{+0.04}_{-0.03}$	11.1σ
		$2010\pm6_{-4}^{+6}$		1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312\pm7^{+7}_{-3}$	$65\pm10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855\pm9^{+6}_{-1}$	$188\pm18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7σ
	$f_2(2010)$	$2062\pm6_{-7}^{+10}$	$165\pm17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	-	-	$1.44 \pm 0.15^{+0.10}_{-0.20}$	15.7σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16\pm0.02^{+0.03}_{-0.01}$	9.9σ

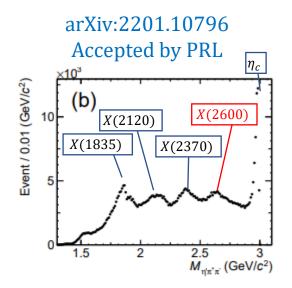
Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta' \eta'$

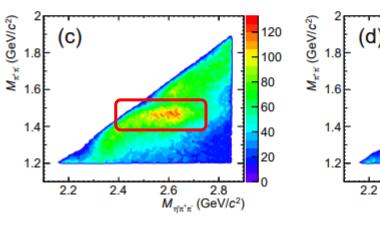

- Observation of the $f_0(2480)$, $f_0(2020)$, $f_0(2330)$ and $f_2(2340)$ decays to $\eta'\eta'$
 - A new 0^{++} state $f_0(2480)$
- after considering the phase-space factor :

$$\frac{\Gamma(f_0(2020) \to \eta \eta')}{\Gamma(f_0(2020) \to \eta' \eta')} = 0.0148$$

 \triangleright Indicates that $f_0(2020)$ is a flavor singlet^[5]


10 billion J/ψ Phys. Rev. D **105**,072002 (2022)


Resonance	$M(MeV/c^2)$	Γ(MeV)	B.F.	Significance (σ
$f_0(2020)$	$1982 \pm 3^{+54}_{-0}$	$436 \pm 4^{+46}_{-49}$	$(2.63 \pm 0.06^{+0.31}_{-0.46}) \times 10^{-4}$	≫25
$f_0(2330)$	$2312 \pm 2^{+10}$	$134 \pm 5^{+30}_{-9}$	$(6.09 \pm 0.64^{+4.00}_{-1.68}) \times 10^{-6}$	16.3
$f_0(2480)$	$2470 \pm 4^{+4}_{-6}$	$75 \pm 9^{+11}_{-8}$	$(8.18 \pm 1.77^{+3.73}_{-2.23}) \times 10^{-7}$	5.2
$h_1(1415)$	$1384 \pm 6^{+9}_{-0}$	$66 \pm 10^{+12}_{-10}$	$(4.69 \pm 0.80^{+0.74}_{-1.82}) \times 10^{-7}$	5.3
$f_2(2340)$	$2346 \pm 8^{+22}_{-6}$	$332 \pm 14^{+26}_{-12}$	$(8.67 \pm 0.70^{+0.61}_{-1.67}) \times 10^{-6}$	16.1
0 ⁺⁺ PHSP			$(1.17 \pm 0.23^{+4.09}_{-0.70}) \times 10^{-5}$	15.7



A New State X(2600) Observed in $I/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

- X(1835) was first observed and confirmed in $I/\psi \to \gamma \pi^+ \pi^- \eta'^{[6][7]}$, with $I^{PC} = 0^{-+[8]}$, and an anomalous line shape at $p\bar{p}$ threshold^[9]
- X(2120), X(2370) also observed in $J/\psi \to \gamma \pi^+ \pi^- \eta'^{[7]}$
- With the 10 billon J/ψ events, a **new state** X(2600)in $M(\eta'\pi^+\pi^-)$ is observed, which is correlated to a structure @1.5 GeV/ c^2 in $M(\pi^+\pi^-)$

reconstruct η' from $\gamma \pi^+ \pi^-$ (left) & $\eta (\to \gamma \gamma) \pi^+ \pi^-$ (right)

[9] PRL 117, 042002 (2016)

2.6

2.8

 $M_{\eta^{\prime}\pi^{\prime}\pi^{\prime}}$ (GeV/ c^2)

2.4

^[6] PRL 95, 262001 (2005)

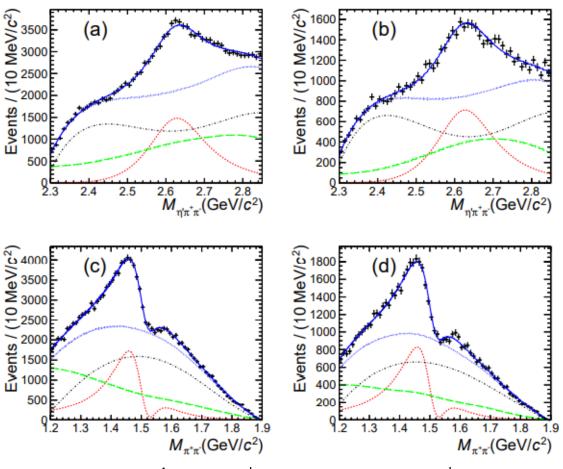
^[7] PRL 106, 072002 (2011)

^[8] PRL 115, 091803 (2015)

A New State X(2600) Observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

- To study X(2600) parameters, a simultaneous fit to $\eta' \pi^+ \pi^-$ and $\pi^+ \pi^-$ is performed
- The structure in $M(\pi^+\pi^-)$ well described with the interference between $f_0(1500)$ and X(1540)

 21203 ± 1456

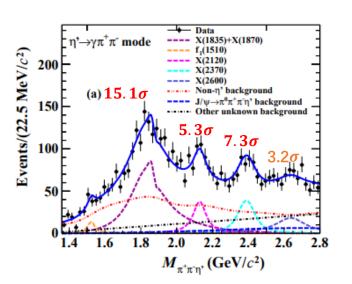

@ > 20σ	${\rm Mass}~({\rm MeV}/c^2)$	Width (MeV)
$f_0(1500)$	$1492.5 \pm 3.6^{+2.4}_{-20.5}$	$107 \pm 9^{+21}_{-7}$
X(1540)	$1540.2 \pm 7.0^{+36.3}_{-6.1}$	$157 \pm 19^{+11}_{-77}$
X(2600)	$2618.3 \pm 2.0^{+16.3}_{-1.4}$	$195 \pm 5^{+26}_{-17}$
Case	fo(1500)	X(1540)

 24585 ± 1689

BF $(\times 10^{-5})$ $3.09 \pm 0.21^{+1.14}_{-0.77}$ $2.69 \pm 0.19^{+0.38}_{-1.21}$

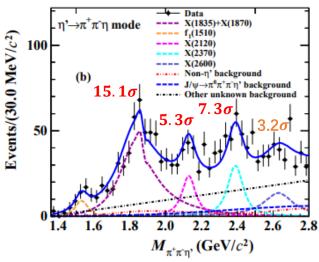
Events

$$X(2600)$$
 $J^{PC} = 0^{-+} or 2^{-+}$


reconstruct η' from $\gamma \pi^+ \pi^-$ (left) & $\eta (\to \gamma \gamma) \pi^+ \pi^-$ (right)

Observation of X(1835), X(2120) and X(2370) in J/ψ EM Dalitz Decays

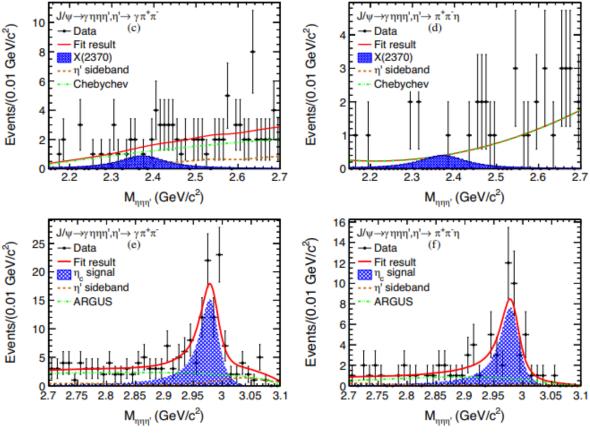
$$J/\psi \rightarrow e^+e^-\pi^+\pi^-\eta'$$


- Confirmation of X(1835), X(2120), X(2370) previously observed in $J/\psi \to \gamma \pi^+ \pi^- \eta'$
- Measurement of the Transition Form Factor of $J/\psi \rightarrow e^+e^-X(1835)$
 - \triangleright Gives additional information of the internal structure of X(1835)

 $\frac{d\Gamma(J/\psi \to e^+e^-X(1835))}{dq^2\Gamma(J/\psi \to \gamma X(1835))} = |F(q^2)|^2 \cdot [QED(q^2)]$ 5 $F(q^2) = \frac{1}{1-q^2/\Lambda^2}$ $\Lambda = 1.75 \pm 0.29 \pm 0.05 \text{ GeV}/c^2$ X(1835) X(1835) $M_{e^+e^-}(GeV/c^2)$

10 billion J/ψ arXiv:2112.14369 Accepted by PRL

12



reconstruct η' from $\gamma \pi^+ \pi^-$ (left) & $\eta (\to \gamma \gamma) \pi^+ \pi^-$ (right)

Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta'$

1.3 billion J/ψ

Phys. Rev. D 103, 012009(2021)

reconstruct η' from $\gamma \pi^+ \pi^-$ (left) & $\eta(\to \gamma \gamma) \pi^+ \pi^-$ (right)

X(2370) previously observed in $J/\psi \to \gamma \pi^+ \pi^- \eta'^{[10]}$ and $J/\psi \to \gamma K \overline{K} \eta'^{[11]}$, and possibly a pseudoscalar glueball candidate

- No evident signal of X(2370) in $J/\psi \to \gamma \eta \eta \eta'$ $B(J/\psi \to \gamma X(2370) \to \gamma \eta \eta \eta') < 9.2 \times 10^{-6} \ (@ 90\% \ C. \ L.)$
- ➤ No contradiction with prediction of the branching ratio for pseudoscalar glueball [12]
- Observation of $\eta_c \to \eta \eta \eta'$ $B(J/\psi \to \gamma \eta_c \to \gamma \eta \eta \eta') = 4.86 \pm 0.62(stat.) \pm 0.45(sys.)$

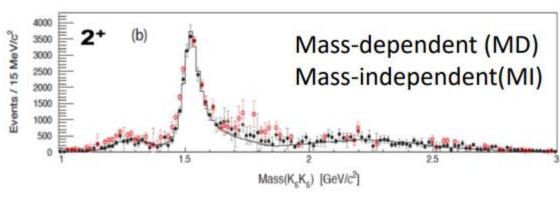
Summary

- $J/\psi \rightarrow \gamma \eta \eta'$
 - Observation of exotic isoscalar $1^{-+} \eta_1(1855)$
 - ➤ Hybrid? Molecule? Tetraquark? ... needs **further study**
 - Support $f_0(1710)$ overlap with scalar glueball
- $J/\psi \rightarrow \gamma \eta' \eta'$
 - $f_0(2020), f_0(2330), f_2(2340)$ and a new state $f_0(2480)$ observed
 - $f_0(2020)$ observed to be a flavor singlet

- Other partners in hybrid nonet: $\pi_1(b_1\pi, f_1\pi, ...)$ and $K_1(K_1(1270)\pi, ...)$
- **Production & decay** of $\eta_1(1855)$
 - $J/\psi(\psi') \rightarrow VX$, ...
 - $X \rightarrow a_1 \pi, K_1 K, f_1 \eta, \dots$

- New X(2600) observed in $J/\psi \to \gamma \pi^+ \pi^- \eta'$ in addition to X(1835), X(2120), X(2370)
- Confirmation of X(1835), X(2120), X(2370) in $J/\psi \to e^+e^-\pi^+\pi^-\eta'$ and measurement of Transition form factor of $J/\psi \to e^+e^-X(1835)$
- Upper limit for X(2370) in $J/\psi \to \gamma\eta\eta\eta'$ and observation of $\eta_c \to \eta\eta\eta'$
- ➤ With the world's largest charmonium data sets, BESIII provides great opportunities to map out light meson spectroscopy and study QCD exotics.


Thank you for your attention!


Backup slide

Amplitude analysis of $J/\psi \rightarrow \gamma K_S K_S$

1.3 billion J/ψ Phys. Rev. D 98, 072003(2018)

MD analysis is well consist with MI analysis

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma (\text{MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance
$K^*(892)$	896	895.81±0.19	48	47.4 ± 0.6	$(6.28^{+0.16}_{-0.17}^{+0.59})\times10^{-6}$	35σ
$K_1(1270)$	1272	1272±7	90	90±20	$(8.54^{+1.07}_{-1.20}{}^{+2.35}_{-2.13})\times10^{-7}$	16σ
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231\pm21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08}_{-0.07}^{+0.08}_{-0.34}^{+0.36}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504±6	109	109±7	$(1.59^{+0.16}_{-0.16}^{+0.18})\times10^{-5}$	23σ
$f_0(1710)$	$1765\pm2^{+1}_{-1}$	1723^{+6}_{-5}	$146\pm3^{+7}_{-1}$	139±8	$(2.00^{+0.03}_{-0.02}^{+0.03}_{-0.10}^{+0.31}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$	-	$146\pm14^{+7}_{-15}$	-	$(1.11^{+0.06}_{-0.06}^{+0.19}_{-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184\pm5^{+4}_{-2}$	2189±13	$364\pm9^{+4}_{-7}$	238±50	$(2.72^{+0.08}_{-0.06}^{+0.17})\times10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411 \pm 10 \pm 7$	-	$349\pm18^{+23}_{-1}$	-	$(4.95^{+0.21}_{-0.21}^{+0.66}_{-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5±0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08}_{-0.09}^{+0.59}_{-0.20})\times10^{-5}$	33σ
$f_2'(1525)$	1516±1	1525±5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03}_{-0.04}^{+0.69})\times10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233\pm34^{+9}_{-25}$	2345^{+50}_{-40}	$507\pm37^{+18}_{-21}$	322_{-60}^{+70}	$(5.54^{+0.34}_{-0.40}^{+3.82})\times10^{-5}$	26σ
0 ⁺⁺ PHSP	-	-	-	-	$(1.85^{+0.05}_{-0.05}^{+0.68}_{-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP	-	-	-	-	$(5.73^{+0.99}_{-1.00}{}^{+4.18}_{-3.74})\times10^{-5}$	13σ