ICHEP 2022 - Bologna, July 6–13, 22

Vector boson associated with jets in CMS

Philippe Gras¹ On behalf of the CMS collaboration

¹CEA/IRFU - Saclay

July 7, 22

Introduction

V+jets

- The clean final state and the abundant production at LHC makes it a good test of pQCD calculation
- Its large cross-section allows validation of calculation techniques common with Higgs production cross section calculation
- Playground to explore non-perturbative terms: soft gluon radiation, PDFs.
- Background for many LHC analyses, whose modeling is essential.

I will present the most recent results from CMS

Z + any jets differential cross section

- CMS-SMP-19-009 submitted to PRD. 35.9fb⁻¹@13TeV
 - N_{jets}, H_T, p_T(j_i), y(j_i), m(j₁, j₂)
 - y_{diff}, y_{sum} , and $\Delta \phi$ between Z, three leading jets, and jet₁+jet₂
 - 2D: (p_T(jet₁), y(jet₁)), (y(Z), y(jet₁)), (p_T(Z), y(Z))
- *m_{ℓℓ}* in 71...110 GeV; *ℓ*: *p*_T>30, 20 GeV, |η| < 2.4; jets: *p*_T > 30 GeV, |*y*| < 2.4</p>

Compared with predictions:

- from MG5_AMC + РҮТНІА 8 with: 0,1,2 jets @NLO merged with FxFx;
- from MG5_AMC + 0,1,2,3,4 jets @LO merged with k_TMLM;
- From Geneva NNLL' $_{\tau}$ + NNLO₀ + Pythia8;

Z + any jet differential cross section: rapidities and $\Delta\phi$

Good description from merged FxFx sample of Z and jet 1 rapidities and angular correlations

Z + any jet differential cross section: $\Delta\phi$

- We have also measured the azimuthal angles as function of Z p_T: < 10 GeV, 30...50 GeV, > 100 GeV
 - Results released last Summer, CMS-PAS-SMP-21-003 C

Z + any jet differential cross section: $\Delta \phi(j_1, j_2)$

Z + any jet differential cross section: $\Delta \phi(j_1, j_2)$

- ▶ In this analysis we have also compared the measurements with TMD-based PS:
 - from MG5_aMC and with 1 jet @NLO, a TMD-based PS using CASCADE3 and Pythia6 for hadronisation (orange);
 - same with 2 jet @NLO $(p_T > 15 \text{ GeV})$ (green)

Mass dependency of dilepton pair p_T in Drell-Yan production

- ▶ Submitted to EPJC in May 22, CMS-SMP-20-003 C
- ► $p_{T}(\ell \ell)$ and $\varphi_{\eta}^{*} = \tan((\phi \Delta \varphi)/2)\sin(\theta^{*})$ distribution measured as function of $m_{\ell \ell}$ for a Z boson in and out of the mass peak.
- Measurement performed with and without requiring one jet with p_T > 30 GeV and |y| < 2.4</p>
- ► Low p_T regions, $p_T < O(m_{\ell\ell})$, provides a good test of soft gluon radiation resummation, while high p_T region provides test of calculation including higher QCD orders.
- Compared with six predictions with different soft initial state QCD radiation:
 - The four mentioned before;
 - MINNLO_{PS}, NNLO matched with PS;
 - ARTEMIDE: using TMDs obtained from fits to DY measurements at different energies: $N^{3}LL$, valid for $p_{T} < 0.2m_{\ell\ell}$;
 - GENEVA with resummation of higher orders at N³LL in q_T matched with NNLO and PS.

Mass dependence of dilepton pair p_T in Drell-Yan production

- ► Z+ ≥1 jet(s)
- No prediction describes perfectly the data in full explored phase space
- Region below the 30 GeV jet p_T requires two jets leading to a phase space where only the MG5_aMC prediction has an NLO accuracy.
- See talk "Recent measurements of W and Z bosons with the CMS experiment" Marco Cipriani gave this morning for Z+ ≥ 0 jets resultsx_{\$/18}

Production in association with heavy flavor jets

Latest results

- ▶ W + c 8TeV: CMS-SMP-18-013 I submitted to EPJC
- ▶ W + c with full Run 2 dataset: CMS-PAS-21-005 , new preliminary result
- ► Z + b with full Run 2 dataset: CMS-SMP-20-015 C accepted by PRD

W + c, 8 and 13TeV

Interest

- sensitive to the strange PDF
- Test pQCD
- Background for other analyses.

Measurement

- Integrated and differential fiducial cross-sections; W⁺c̄,/W⁻c ratio.
- ► W→ $e\nu$, W→ $\mu\nu$
- Phase space 13TeV (8TeV):
 - $p_{\rm T}^{\ell} > 35(30)\,{\rm GeV}, \, |\eta^{\ell}| < 2.4(2.1)$
 - ▶ $p_T(c jet) > 30 \text{ GeV}, |\eta^{c-jet}| < 2.4$ ($p_T(c - quark) > 25 \text{ GeV} |\eta^{c-quark}| < 2.5$) $R(jet, \ell) < 0.4(0.5)$, anti-kt jet with R = 0.4(0.5)

Effect of including CMS Wc 8 TeV measurement on the strange PDF relative uncertainty.

W + c, 8 and 13TeV

c-tagging: two categories

- One muon in the jet: from semi-leptonic decay (SL)
- Secondary vertex in the jet (SV)

Background

- The dominant background, tt with a b-jet misidentified as a c-jet, is suppressed by the OS-SS subtraction method
- Signal purity after OS-SS subtraction (13TeV):

	SL	SV
SL W \rightarrow e ν	81.0%	82.1%
SL W $\rightarrow \mu \nu$	74.2%	80.9%

W + c, 8 and 13 TeV

W + c, 8 and 13TeV

Differential cross sections

14/18

Z + b(b)

Interest

- Measurement important to test the cross-section calculations, 4FS and 5FS
- ▶ Background to ZH, $H \rightarrow bb$
- Sensitive to b PDF

Measurements

- Integrated cross-section
- ► $d\sigma/dX$ in: q_T ; b-jet p_T and $|\eta|$; $\Delta \phi$, y, and R between Z and b-jet; m_{bb} , m_{Zbb} , ΔR_{bb} .
- ▶ $p_{\rm T}(\ell) > 35,25\,{\rm GeV}, |\eta| < 2.4$
- ▶ *m_{ℓℓ}* in 71...111 GeV
- ▶ b-jet: $p_{\rm T} > 30 \, GeV$, $|\eta| < 2.4$
- Compared with three 5FS calculations

Many observables explored. Shapes are not always well described by the predictions

Nice inputs for calculation improvements.

Z boson invisible width measurements

- ▶ CMS-SMP-18-014 submitted to PLB
- ▶ Invisible width extracted from $Z(\rightarrow \nu \bar{\nu})$ +jets and $Z(\rightarrow \ell^+ \ell^-)$ +jets, $\ell = \mu$, e cross sections:

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{\sigma(Z(\to \nu \bar{\nu}) + \text{jets})}{\sigma(Z(\to \ell \ell) + \text{jets})} \Gamma(Z \to \ell \ell)$$

Background estimated with data driven methods

Z boson invisible width measurements

	p_{T}^{miss} +jets	$Z/\gamma^* \rightarrow \mu\mu$	$Z/\gamma^* \rightarrow ee$
$Z(\nu\nu)$ +jets	310000	_	_
$Z/\gamma^* \rightarrow \ell \ell$	2680	25900	17300
$W(\ell\nu)$ +jets	195000	_	_
QCD multijet	3360	_	_
Minor	25600	1720	1090
Total SM	537000	27600	18400
Data	537326	27631	18326

Source of systematic uncertainty	Uncertainty (%)
Muon identification efficiency (syst.)	2.1
Jet energy scale	1.8 - 1.9
Electron identification efficiency (syst.)	1.6
Electron identification efficiency (stat.)	1.0
Pileup	0.9-1.0
Electron trigger efficiency	0.7
τ_h veto efficiency	0.6-0.7
$p_{\rm T}^{\rm miss}$ trigger efficiency (jets plus $p_{\rm T}^{\rm miss}$ region)	0.7
$p_{\rm T}^{\rm miss}$ trigger efficiency (Z/ $\gamma^* \rightarrow \mu\mu$ region)	0.6
Boson p_T dependence of QCD corrections	0.5
Jet energy resolution	0.3-0.5
$p_{\rm T}^{\rm miss}$ trigger efficiency (μ +jets region)	0.4
Muon identification efficiency (stat.)	0.3
Electron reconstruction efficiency (syst.)	0.3
Boson p_T dependence of EW corrections	0.3
PDFs	0.2
Renormalization/factorization scale	0.2
Electron reconstruction efficiency (stat.)	0.2
Overall	3.2

Summary

Latest V+jets CMS results presented

- Z + jets, including qT dependency of angular correlations
- Mass dependency of q_T in Drell-Yan
- W + c with full run 2 dataset and with full 8TeV dataset
- Z + b with full run 2 dataset
- Invisible Z width measurement achieving LEP precision

They complement a large legacy of measurements @ 7, 8, and 13 TeV