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1. Introduction

We present the first proof-of-concept application of a quantum algo-
rithm to multiloop Feynman integrals exploiting the Loop-Tree Du-
ality (LTD) and causality. Causality obtained from the LTD formal-
ism is a suitable problem to address with quantum computers. The
two on-shell states of Feynman propagators are identified with the
two states of a qubit. We modify the original Grover’s algorithm for
queryng multiple solutions over unstructured databases and imple-
ment the algorithm in IBM Quantum' and QUTE? simulators. The
algorithm may also find application and interest in graph theory to
solve problems involving directed acyclic graphs.

2. Loop-Tree Duality and Causality

Multiloop multileg integrals and scattering amplitudes are defined,
in the Feynman representation, as integrals,
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in the Minkowski space of the . loop momenta. fgs, stands for the

integration measure in DREG> with d space-time dimensions and
an arbitrary energy scale, the numerator N is given by the Feynman
rules of the specific theory and qg) = \/q°+ m? —10 are the en-
ergy components of the momenta flowing through the propagators
q;, With q; the spacial components and m; the propagating particle
mass.

Causal and noncausal singularities in Eqg. (1) arises when Feynman
propagators are set on-shell. Explicitly, when the energy compo-
nent, ¢; , takes either value of iq%).

The LTD [1,2] aims to overcome these and other problems present in
scattering amplitudes. The LTD representation of scattering ampli-
tudes is obtained by the iterative application of the Cauchy’s residue
theorem, integrating out one degree of freedom, selecting the poles
with negative imaginary part in the complex plane of the loop mo-
mentum when closing the contour from below the real axis which is
equivalent to set on-shell certain internal propagators.

The calculation of the nested residues within the LTD leads to a
causal representation of scattering amplitudes where it is shown

[3, 4] that Eq. (1) is equivalent to
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the integration measure in the loop three-momentum space. We
define the causal propagators in Eq. (2) by

N =N = Z qz(,g) + kpo (4)
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where o (i) stands for the partition p of the set of on-shell energies
and the orientation of the energy components of the external mo-
menta, k, . Setting on-shell all propagators in pleads toasignof k,
that defines when )\~ becomes singular. Each causal propagator is
in a one-to-one correspondence with any possible threshold singu-
larity of the amplitude A}L), which contains overlapped thresholds;
the latter known as causal thresholds. The combinations of entan-
gled causal propagators represent causal thresholds that can occur
simultaneously which are collected in the set ..

The following picture shows the topologies studied. Top, left to
right: One-, two-, three-, and four-loops. Down, left to right: ¢-, s-
and u-channels.

Figure 1: Representative topologies from one loop to up to four loops.

3. Causal Query of Multiloop Feynman

Integrals

We construct a modified version of Grover’s algorithm [5] for query-
ing the so-called causal configurations.

3.1 Preparation

From the N = 2" states we have r winning states and N — r orthog-

onales states
| q)

N
q) = \/—N;O )

= cosf|qL) + sinf|w) . (5)

» | q,)

|1 ) encodes the noncausal states and |w) the casual states. The an-

gle § = arcsin /7/N.

3.2 Amplification

« The oracle operator U,, marks the winning states and the diffusion
operator U, amplifies them

Uy =T —2|w){w|, 0\ n
> 14,
Uy=2)al ~I.  (6) IE
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U, flips the state |z) if z € w, U,|r) = —|x), and leaves it un-

changed otherwise, U, |x) = |z) if © ¢ w.

 The iterative application of the U,, and
U, operators for t times leads to

(U,Uw)'|q) = cos by |q.) +sinb; |w) . (7)

where 0, = (2t + 1) 6, reaching the best ze/
output when sin“ 8, ~ 1.

3.3 Implementation

« We initialise the propagators in |¢) in the state |0).
« The uniform superposition is achieved by |¢) = H*"|q).

* The register, |c), stores the Boolean clauses c¢;; that probe if two
qubits representing adjacent edges are in the same state,

cij = (¢ = qj) ; Cij = (@ # qj) ; i,j€(0,...,n=1). (8)
and are implemented by CNOT gates.

* The register, |a), encodes the loop clauses that probe if the qubits
compared in |c) form a cyclic circuit, is implemented by Toffoli
gates.

 The Grover’s marker |out) is initialised in the state
=)= (l0) = [1)/v2.
« Finally, the oracle is defined as
Uylg)|cla)|out) = (=1)/“Pg)|c)|a)|out) . (9)
)

If all the causal conditions are satisfied f(a, ¢q) = 1, the correspond-
ing states are marked; otherwise, f(a,q) = 0, they are left un-
changed.
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Figure 2: Quantum circuit for the one loop case.
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Figure 3: Proability distribution showing the causal configurations amplified. The number of selected states is 6/8.

4.2 Two and three loops
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Figure 4: Up: Quantum circuit of the oracle fortwo Figure 5: Up: Quantum circuit of the oracle for three
loops. Bottom: Probability distributions of the loops. Bottom: Probability distributions of the

results. Number of states is 9/2° results with the number of selected states 12/2°

4.3 Four loops| s,t,u-channels

Probability distribution of the results for the four loops, s,t, and u-
channels.

Four eloops (N2MLT), single four-particle vertex (qasm _simulator, 700shots) . Foureloops (N*MLT), s-channel (qasm_simulator, 1300 shots)

Figure 6: Top left: The number of selected states is 39/2°. Bottom left: The number of selected states is 102/2°.

Bottom right: The number of selected states is 115/2%°

4. Benchmark multiloop topologies

We present the explicit implementation of the quantum algorithm
in IBM Quantum and QUTE simulators. All the cases under 32 qubits
were tested in IBM Quantum simulators. The four loops u-channel
topology, with 33 qubits, was tested in QUTE.

4.1 One loop

We present the quantum circuit for one loop case and show the
probability distributions of its output.

Thttps://quantum-computing.ibm.com/
2https://qute.ctic.es/
3Dimensional Regularisation

5. Conclusions

« We have successfully identified all the causal singular configura-
tions of selected topologies of multiloop Feynman integrals.

« The algorithm was succesufully implemented in IBM Quantum
and QUTE simulators.

 The identification of directed acyclic graphs is a challenging prob-
lem beyond particle physics.

« The output of the quantum algorithm is used to bootstrap the
causal representation in the LTD of representative multiloop
topologies.
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