CEvNS with Photon Emission as Smoking Gun Signal of New Physics

Julia Harz, Technical University of Munich

in collaboration with

Patrick Bolton, Frank Deppisch, Chandan Hati, Kåre Fridell, Suchita Kulkarni

Bologna, July 8th 2022 ICHEP 2022

based on arxiv:hep-ph/2110.02233

Technische Universität München

Previously a hubris – now a reality

Coherent elastic neutrino nucleus scattering – postulated in 1974 by D. Freedman

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10^{-38} cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

Julia Harz

Window to New Physics: CEvNS

Neutrino energy for coherence:

$$E_{\nu} \le \frac{hc}{R_N} \approx O(50 \text{MeV})$$

extension of nucleus Maximal nucleus recoil energy:

$$E_r^{
m max} = rac{2E_
u^2}{M_A} pprox O({
m keV})$$
 mass nucleus

Many running and upcoming experiments, e.g.

- COHERENT: 6.7σ observation, compatible with SM (Akimov et al. 2017)
- CONUS, MINER, RICOCHET, CONNIE, NUCLEUS, RED100, TEXONO ...

Rich physics opportunities:

- Light mediators, neutrino NSIs, neutrino magnetic moments, CPV mediators Billard et al. (2019), Lindner et al. (2017), Bischer et al. (2019), Kosmas et al. (2015), Miranda et al. (2019), Sierra et al. (2019), ...
- Link to dark matter, neutrino oscillations, supernovae dynamics Brdar et al. (2018), Colama et al. (2017), Wilson et al., ...
- Link to nuclear physics, form factors, neutron radius Amanik + McLaughlin, Patton et al. (2012), Caddedu et al. (2017), ...

Julia Harz

Window to New Physics: CEvNS

Neutrino energy for coherence:

$$E_{\nu} \le \frac{hc}{R_N} \approx O(50 \text{MeV})$$

extension of nucleus Maximal nucleus recoil energy:

$$E_r^{\rm max} = \frac{2E_\nu^2}{M_A} \approx O({\rm keV}) \label{eq:Er}$$
 mass nucleus

Many running and upcoming experiments, e.g.

- COHERENT: 6.7σ observation, compatible with SM (Akimov et al. 2017)
- CONUS, MINER, RICOCHET, CONNIE, NUCLEUS, RED100, TEXONO ...

Rich physics opportunities:

- Light mediators, neutrino NSIs, neutrino magnetic moments, CPV mediators Billard et al. (2019), Lindner et al. (2017), Bischer et al. (2019), Kosmas et al. (2015), Miranda et al. (2019), Sierra et al. (2019), ...
- Link to dark matter, neutrino oscillations, supernovae dynamics Brdar et al. (2018), Colama et al. (2017), Wilson et al., ...
- Link to nuclear physics, form factors, neutron radius Amanik + McLaughlin, Patton et al. (2012), Caddedu et al. (2017), ...

Julia Harz

Neutrino transition magnetic moments

 $\mathcal{L} \supset \mu^{\alpha}_{\nu N} \bar{\nu}_{\alpha L} \sigma_{\mu \nu} P_R N F^{\mu \nu} + \mu^{\alpha}_{N' N} \bar{N'} \sigma_{\mu \nu} P_R N F^{\mu \nu} + \text{h.c.}$

Julia Harz

Latest constraints on neutrino magnetic moment

Brdar et al. (2021)

DFG :

Latest constraints on neutrino magnetic moment

How does coherent elastic neutrino nucleus scattering compare?

Julia Harz

The NUCLEUS experiment

- At the very near site (VNS) of Double-Chooz
- NUCLEUS-phase 1: 10g Al₂O₃/CaWO₄
- NUCLEUS-phase 2: 1kg ⁷³Ge upgrade
- Energy threshold: 10 eV
- Sensitivity to photon energy: 1keV to 10 MeV
- Distance to cryogenic outer veto L_{det} = 5cm for phase 1, L_{det} = 25cm for phase 2

T. Lasserre

Neutrino transition magnetic moments

For scales much larger than the light active neutrinos $m_{\nu} \ll E_{\nu}$, rates are identical for Dirac and Majorana active neutrinos \rightarrow agreement with Dirac-Majorana confusion theorem

- → How sensitive is the NUCLEUS experiment to neutrino transition magnetic moments?
- → Can we distinguish Dirac vs. Majorana right-handed neutrinos (RHNs)?

Julia Harz

Probing neutrino magnetic moments with CEvNS

Julia Harz

CEvNS with photon emission as a smoking gun signal for new physics

7

Sensitivity of NUCLEUS to CEvNS

see also for other CEvNS limits e.g. Miranda, Papoulias, Sanders, Tortola, Valle (2021)

Julia Harz

CEvNS with Photon Emission

Primakoff-upscattering with photon emission

Suppressed, but new smoking gun signal due to coincidence event: recoil energy plus photon detection!

Julia Harz

CEvNS with Photon Emission

$$i\mathcal{M}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{D}} = \mu_{\nu N}^{\alpha}\mu_{\nu N}^{\beta}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}P_{R}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$
$$i\mathcal{M}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{M}} = \mu_{\nu N}^{\alpha}\mu_{\nu N}^{\beta}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$

Electron-recoil distribution:

$$\frac{d\sigma_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}^{\mathbf{D}(\mathbf{M})}}{dE_{R}}\Big|_{\mathrm{NWA}} = \frac{d\sigma_{\nu_{\alpha}A\to NA}}{dE_{R}}\frac{\Gamma_{N\to\nu_{\beta}\gamma}^{\mathbf{D}(\mathbf{M})} + \Gamma_{N\to N'\gamma}^{\mathbf{D}(\mathbf{M})}}{\Gamma_{N}}$$

Differential rate wrt to the nuclear recoil energy for coincidence event:

$$\frac{dR_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}}{dE_R} \propto \int_{E_{\nu}^{\min}}^{E_{\nu}^{\max}} dE_{\nu} \frac{d\phi_{\nu_{\alpha}}}{dE_{\nu}} \frac{d\sigma_{\nu_{\alpha}A\to NA}^{\mathbf{D}(\mathbf{M})}}{dE_R} \mathcal{B}_{N\to X\gamma} \left(1 - \exp\left(-\frac{L_{\det}\Gamma_N}{\beta\gamma}\right)\right)$$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Majorana vs Dirac RHN – nuclear recoil

With nuclear recoil only no possibility to disentangle Dirac vs Majorana nature, as factor 2 can be absorbed into magnetic moment.

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

$$i\mathcal{M}^{\mathbf{D}}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma} = \mu^{\alpha}_{\nu N}\mu^{\beta}_{\nu N}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}P_{\mathbf{R}}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$
$$i\mathcal{M}^{\mathbf{M}}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma} = \mu^{\alpha}_{\nu N}\mu^{\beta}_{\nu N}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$

Electron-recoil distribution:

$$\frac{d\sigma_{\nu_{\alpha}A \to \nu_{\beta}A\gamma}^{\mathbf{D}(\mathbf{M})}}{dE_{R}}\Big|_{\mathrm{NWA}} = \frac{d\sigma_{\nu_{\alpha}A \to NA}}{dE_{R}}\frac{\Gamma_{N \to \nu_{\beta}\gamma}^{\mathbf{D}(\mathbf{M})} + \Gamma_{N \to N'\gamma}^{\mathbf{D}(\mathbf{M})}}{\Gamma_{N}}$$

Differential rate wrt to the nuclear recoil energy for coincidence event:

$$\frac{dR_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}}{dE_R} \propto \int_{E_{\nu}^{\min}}^{E_{\nu}^{\max}} dE_{\nu} \frac{d\phi_{\nu_{\alpha}}}{dE_{\nu}} \frac{d\sigma_{\nu_{\alpha}A\to NA}^{\mathsf{D}(\mathsf{M})}}{dE_R} \mathcal{B}_{N\to X\gamma} \left(1 - \exp\left(-\frac{L_{\det}\Gamma_N}{\beta\gamma}\right)\right)$$

Number of coincidence events:

$$N_{\rm exp}^{\gamma} = T_{\rm run} m_{\rm det} \int_{E_R^{\rm min}}^{E_R^{\rm max}} dE_R \frac{dR_{\nu_{\alpha}A \to \nu_{\beta}A\gamma}}{dE_R} < 2.30 \quad (90 \ \% {\rm C.L.})$$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

For coincidence signal, photon needs to decay within the detector (NUCLEUS: $L_{det} = 5$ cm):

$$\frac{dR_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}}{dE_R}\supset\frac{\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}}{\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}+\Gamma_{N\to \mathrm{inv}}}\left(1-\exp\left(-\frac{L_{\mathrm{det}}(\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}+\Gamma_{N\to\mathrm{inv}})}{\beta\gamma}\right)\right)$$

To cover different possible realizations, we distinguish three cases:

(1) Only active-to-sterile transition $\mathcal{B}_{N \to X\gamma} = 1$

 $\mu_{\nu N} \neq 0, \mu_{NN'} = 0, \Gamma_{N \to \text{inv}} = 0 \qquad \qquad P_N^{\text{det}} = \Gamma_{N \to X\gamma} L_{\text{det}} / \beta \gamma \ll 1$

(2) Active-to-sterile transition + invisible decays $\mathcal{B}_{N \to X\gamma} \ll 1$ $\mu_{\nu N} \neq 0, \mu_{NN'} = 0, \Gamma_{N \to \text{inv}} = \beta \gamma / L_{\text{det}} \gg \Gamma_{N \to X\gamma} \qquad P_N^{\text{det}} = 0.63$

(3) Active-to-sterile + sterile-to-sterile transition

$$\mathcal{B}_{N \to X\gamma} = 1$$

$$\mu_{\nu N} \neq 0, \mu_{NN'} = 10^{-6} \ \mu_B, \Gamma_{N \to \text{inv}} = 0$$

 $P_N^{\rm det} \sim 1$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Technische Universität München

Julia Harz

For coincidence signal, photon needs to decay within the detector (NUCLEUS: $L_{det} = 5$ cm):

$$\frac{dR_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}}{dE_R}\supset\frac{\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}}{\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}+\Gamma_{N\to \mathrm{inv}}}\left(1-\exp\left(-\frac{L_{\mathrm{det}}(\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}+\Gamma_{N\to\mathrm{inv}})}{\beta\gamma}\right)\right)$$

To cover different possible realizations, we distinguish three cases:

(1) Only active-to-sterile transition $\mu_{\mu N} \neq 0, \ \mu_{N N'} = 0, \ \Gamma_{N \to inv} = 0$ $\mathcal{B}_{N \to X\gamma} = 1$ $P_N^{\text{det}} = \Gamma_{N \to X\gamma} L_{\text{det}} / \beta \gamma \ll 1$

(2) Active-to-sterile transition + invisible decays $\mu_{\nu N} \neq 0, \mu_{NN'} = 0, \Gamma_{N \to \text{inv}} = \beta \gamma / L_{\text{det}} \gg \Gamma_{N \to X\gamma} \qquad P_N^{\text{det}} = 0.63$

(3) Active-to-sterile + sterile-to-sterile transition

$$\mu_{\nu N} \neq 0, \mu_{NN'} = 10^{-6} \ \mu_B, \Gamma_{N \to \text{inv}} = 0$$

 $\mathcal{B}_{N \to X\gamma} = 1$

 $P_N^{\rm det} \sim 1$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Technische Universität München

Julia Harz

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

CEvNS with photon emission as a smoking gun signal for new physics

Technische Universität München

13

For coincidence signal, photon needs to decay within the detector (NUCLEUS: $L_{det} = 5$ cm):

$$\frac{dR_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}}{dE_R}\supset\frac{\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}}{\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}+\Gamma_{N\to \mathrm{inv}}}\left(1-\exp\left(-\frac{L_{\mathrm{det}}(\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}+\Gamma_{N\to\mathrm{inv}})}{\beta\gamma}\right)\right)$$

To cover different possible realizations, we distinguish three cases:

(1) Only active-to-sterile transition $\mathcal{B}_{N \to X\gamma} = 1$

 $\mu_{\nu N} \neq 0, \mu_{NN'} = 0, \Gamma_{N \to \text{inv}} = 0 \qquad \qquad P_N^{\text{det}} = \Gamma_{N \to X\gamma} L_{\text{det}} / \beta \gamma \ll 1$

(2) Active-to-sterile transition + invisible decays $\mu_{\nu N} \neq 0, \mu_{NN'} = 0, \Gamma_{N \to \text{inv}} = \beta \gamma / L_{\text{det}} \gg \Gamma_{N \to X\gamma} \qquad P_N^{\text{det}} = 0.63$

(3) Active-to-sterile + sterile-to-sterile transition

$$\mathcal{B}_{N \to X\gamma} = 1$$

$$\mu_{\nu N} \neq 0, \mu_{NN'} = 10^{-6} \ \mu_B, \Gamma_{N \to \text{inv}} = 0$$

 $P_N^{\rm det} \sim 1$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Technische Universität München

Julia Harz

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

CEvNS with photon emission as a smoking gun signal for new physics

Technische Universität München

13

For coincidence signal, photon needs to decay within the detector (NUCLEUS: $L_{det} = 5$ cm):

$$\frac{dR_{\nu_{\alpha}A\to\nu_{\beta}A\gamma}}{dE_R}\supset\frac{\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}}{\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}+\Gamma_{N\to \mathrm{inv}}}\left(1-\exp\left(-\frac{L_{\mathrm{det}}(\Gamma_{N\to\nu_{\beta}\gamma}+\Gamma_{N\to N'\gamma}+\Gamma_{N\to\mathrm{inv}})}{\beta\gamma}\right)\right)$$

To cover different possible realizations, we distinguish three cases:

(1) Only active-to-sterile transition $\mu_{\nu N} \neq 0, \ \mu_{N N'} = 0, \ \Gamma_{N \to inv} = 0$ $\mathcal{B}_{N \to X\gamma} = 1$ $P_N^{\text{det}} = \Gamma_{N \to X\gamma} L_{\text{det}} / \beta \gamma \ll 1$

(2) Active-to-sterile transition + invisible decays $\mu_{\nu N} \neq 0, \mu_{NN'} = 0, \Gamma_{N \to \text{inv}} = \beta \gamma / L_{\text{det}} \gg \Gamma_{N \to X\gamma} \qquad P_N^{\text{det}} = 0.63$

(3) Active-to-sterile + sterile-to-sterile transition

$$\mathcal{B}_{N \to X\gamma} = 1$$

$$\mu_{\nu N} \neq 0, \mu_{NN'} = 10^{-6} \ \mu_B, \Gamma_{N \to \text{inv}} = 0$$

 $P_N^{\rm det} \sim 1$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Technische Universität München

Julia Harz

DFG :

Technische Universität München

13

$$i\mathcal{M}^{\mathbf{D}}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma} = \mu^{\alpha}_{\nu N}\mu^{\beta}_{\nu N}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}P_{\mathbf{R}}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$
$$i\mathcal{M}^{\mathbf{M}}_{\nu_{\alpha}A\to\nu_{\beta}A\gamma} = \mu^{\alpha}_{\nu N}\mu^{\beta}_{\nu N}[\bar{u}_{\nu_{\beta}}\sigma_{\mu\nu}(p_{N}+m_{N})\sigma_{\rho\sigma}P_{L}u_{\nu_{\alpha}}]X^{\mu\nu\rho\sigma}$$

Energy and angular distribution of the photon:

$$\frac{d^2 \sigma_{\nu_{\alpha} A \to \nu_{\beta} A \gamma}^{\mathbf{D}(\mathbf{M})}}{dE_{\gamma} d\theta_{\gamma}} \bigg|_{\text{NWA}} = |\mu_{\nu N}^{\alpha} \mu_{\nu N}^{\beta}|^2 \frac{\alpha Z^2 E_{\gamma} \sin \theta_{\gamma}}{128\pi^2 m_A E_{\nu} m_N \Gamma_N} \int_{t_1^-}^{t_1^+} dt_1 \frac{L_{\mu\nu}^{\gamma, \mathbf{D}(\mathbf{M})} H^{\mu\nu} \mathcal{F}^2(t_1)}{t_1^2 \sqrt{-\Delta_4}} \bigg|_{s_1 = m_N^2}$$

 $\begin{array}{c} \frac{d^2 \sigma_{\nu h \to \nu A \gamma}^{n}}{dE_{\gamma} d\theta_{\gamma}} \left[\mathrm{cm}^2 \mathrm{MeV}^{-1} \mathrm{rad}^{-1} \right] \\ 0.0 \\ 0$ 73 Ge, $E_{\nu} = 3 \text{ MeV}$ $imes 10^{-41}$ 73 Ge, $E_{\nu} = 3 \text{ MeV}$ $\frac{l^2 \sigma_{\nu A \to \nu A \gamma}^M}{dE_{\nu} d\theta_{\nu}} \ \left[\mathrm{cm}^2 \,\mathrm{MeV}^{-1} \,\mathrm{rad}^{-1} \right]$ $\times 10^{-41}$ 10.0 $\theta_{\gamma} = 0.5 \text{ rad}$ --- $\theta_{\gamma} = 0.5$ rad 8.0 $\theta_{\gamma} = 2.0 \text{ rad}$ $\theta_{\sim} = 2.0 \text{ rad}$ 4.0f de. $6.0 \cdot$ 2.0 $m_N = 1 \text{ MeV}$ 4.0 $m_N = 1 \text{ MeV}$ $\Gamma_N = 10^{-11} \text{ MeV}$ $\Gamma_N = 10^{-11} \text{ MeV}$ 2.0 $\mu_{\nu N}^{e} = 10^{-7} \, \mu_{B}$ $\mu_{\nu N}^e = 10^{-7} \, \mu_B$ 0.03.0 ---- $E_{\gamma} = 0.5 \text{ MeV}$ Majorana Dirac $E_{\gamma} = 0.5 \text{ MeV}$ 3.0 $\dots E_{\gamma} = 2.0 \text{ MeV}$ $\dots E_{\alpha} = 2.0 \text{ MeV}$ $-\int dE_{\gamma}$ - $\int dE_{\gamma}$ 2.52.52.02.0 θ_{γ} [rad] θ_{γ} [rad] 1.01.00.50.50.0 + 0.0 $\times 10^{-41}$ $0.0 \downarrow 0.0$ 1.52.00.0 2.0 4.0 0.51.0 1.5 2.0 2.54.0 8.0 12.0 0.51.0 2.53.0 3.0 0.0 6.0 $\frac{d^2 \sigma^{\rm D}_{\nu A \to \nu A \gamma}}{d E_{\gamma} d \theta_{\gamma}} \, \left[{\rm cm}^2 \, {\rm MeV}^{-1} \, {\rm rad}^{-1} \right]$ $\frac{d^2 \sigma^{\mathrm{M}}_{\nu A \to \nu A \gamma}}{dE_{\nu A} d\theta_{\nu}} \left[\mathrm{cm}^2 \, \mathrm{MeV}^{-1} \, \mathrm{rad}^{-1} \right]$ E_{γ} [MeV] E_{γ} [MeV] $\frac{d^2 \sigma^{\mathrm{M}}_{\nu_{\alpha} A \to \nu_{\beta} A \gamma}}{ds_1 dt_1} \Big/ \frac{d^2 \sigma^{\mathrm{D}}_{\nu_{\alpha} A \to \nu_{\beta} A \gamma}}{ds_1 dt_1} = 1 + \frac{m_N^2}{s_1}$ $\nu_{\alpha}A \rightarrow \nu_{\beta}A\gamma \quad \nu_{\alpha}A \rightarrow \bar{\nu}_{\beta}A\gamma$ Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

CEvNS with photon emission as a smoking gun signal for new physics

Technische Universität München

 $E_{\nu} = 3 \text{MeV}, m_N = 1 \text{MeV}, \mu_{\nu N}^{\alpha} = 3 \times 10^{-8} \mu_B, \Gamma_N = 10^{-11} \text{MeV}$

→ Majorana vs Dirac nature shows clear difference for larger photon energies / smaller angles

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

→ Different angular and energy distribution of photons for Dirac vs. Majorana RHNs

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

CEvNS with photon emission as a smoking gun signal for new physics

16

Insight in the nature of active neutrinos

• In case of contribution consistent to Dirac RHN:

- \rightarrow no conclusive statement possible
- In case of contribution consistent to Majorana RHN:

$$m_{\nu} \sim \frac{1}{16\pi^2} \mu_{\nu N}^2 m_N \Lambda^2$$
$$\sim \left(\frac{\mu_{\nu N}}{\mu_B}\right)^2 \frac{\alpha}{16\pi} \frac{m_N \Lambda^2}{m_e^2}$$

→ implies lepton-number violation and a Majorana mass term for active neutrinos

→ complementary probe to LNV at LHC or neutrinoless double beta decay

For example,
$$m_N \sim 1$$
 MeV, $\Lambda \sim 1$ TeV and $m_v < 1$ eV $\rightarrow \frac{|\mu_{\nu N}|}{\mu_B} < 10^{-8}$

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

Julia Harz

Conclusions

 Photon emission off Primakoff-upscattering as new smoking gun signature for the detection of neutrino magnetic moments

Photon detection allows for identifying Majorana vs Dirac nature of RHNs

TEXONO

 Identification of RHN give hints towards the Majorana vs Dirac nature of active neutrinos

 \rightarrow Maybe yet a hubris, but motivation to probe beyond nuclear recoil energy

Julia Harz

Thank you for your attention!

Probing neutrino magnetic moments with CEvNS

Miranda, Papoulias, Sanders, Tortola, Valle (2021)

Julia Harz

Hint towards the neutrino mass mechanism?

Majorana mass term

if transition magnetic moment gets loop induced via heavy NP

active-to-sterile mixing

×

For example, see-saw type I with $m_N \sim 50$ MeV, $\Lambda \sim 1$ TeV and $m_{VN}^D \sim 1$ keV $\rightarrow m_V \sim 0.2$ eV

A sign for radiative CEvNS would imply a neutrino mass mechanism beyond see-saw type !!

Bolton, Deppisch, Fridell, JH, Hati, Kulkarni (2021)

How magnetic can the neutrino be?

$$\mathcal{L}_{\text{eff}} = \sum_{n,j} \frac{C_j^n(\mu)}{\Lambda^{n-4}} \mathcal{O}_j^{(n)}(\mu) + \text{h.c.}$$

$$\delta m_{\nu N} = \frac{v^2}{16m_e} \frac{C_3^{(6)}(v)}{C_1^{(6)}(v) + C_2^{(6)}(v)} \frac{\mu_{\nu N}}{\mu_B}$$

$$\frac{|\mu_{\nu N}|}{\mu_B} \sim 10^{-15} \left(\frac{\delta m_{\nu N}}{1 \text{ eV}}\right)$$

Bell, Cirigliano, Ramsey-Musolf, Vogel, Wise (2005)

Discrepancies would help to disentangle mass mechanism!

Julia Harz

