Coherent elastic neutrino-nucleus scattering in argon with a scintillating bubble chamber

Eric Vázquez Jáuregui Instituto de Física, UNAM

ICHEP 2022: International Conference on High Energy Physics Bologna, Italy, July 8th, 2022

SBC Collaboration

Northwestern University

- Eric Dahl
- Rocco Coppejans
- Zhiheng Sheng
- Aaron Brandon
- David Velasco
- Ari Sloss
- Mahebub Khatri
- Dishen Wang
- Shishir Bandapalli

Queen's

- Ken Clark
- Hector Hawley
- Patrick Hatch
- Austin De St Croix

ALBERTA

- Marie-Cécile Piro
- Carsten Krauss
- Daniel Durnford
- Sumanta Pal
- Youngtak Ko
- Mitchel Baker

SNOLAB

- Pietro Giampa
- Eric Poulin

2

Physics with bubble chambers

- 1970s: Neutrino Beam Physics
- Sensitive to MIPs
- Particle tracks visible
- Threshold << 1 keV
- Multi-ton chambers, multiple fluids

2000-today: Nuclear Recoil Detectors

- Dark matter searches with fluorocarbon bubble chambers
- Electron recoil blind
- \bullet Nuclear recoil threshold $\sim 3 {\rm keV}$
- Scalable at modest cost

First demonstration of SBC

Phys Rev Lett 118, 231301

A nuclear recoil:

- Demonstrated (NU):
 - Xenon at 500 eV threshold
 - 30-gram target
 - 0.3% photon-detection efficiency
- Argon down to 40 eV threshold (1 bubble/ton-year from thermal fluctuations)
 - 10-kg target
 - 5% photon-detection efficiency (1 phd @ 2 keVr)

Events with zero photons are signal

Xenon bubble chamber

- Xenon measured to have outstanding ER discrimination
- \bullet Thresholds explored down to 500 eV
- No gamma induced ER observed
- Xe bubble chambers don't work for tracks (J.L. Brown, D.A. Glaser and M.L. Perl, Phys Rev 102, 1956), "solved" by adding 2% ethylene.

30g of LXe, 30% Overall Light Collection Efficiency

10 kg liquid Argon bubble chamber: 100 eV threshold

- Ar + 10-100 ppm Xe target, 178 nm scintillation
- SiPMs immersed in hydraulic fluid (CF4 at 130K)
- 20-360 psia (~1-25 bar) cycles
- Single-fluid, "right-side-up" geometry used by PICO-40L

Calibration

• Different nuclear recoil calibration techniques

10 kg liquid Argon bubble chamber

SBC-10kg: Readout systems

• 3 Raspberry-Pi controlled cameras and LED rings for illumination:

• 32 Hamamatsu VUV4 Quads to measure scintillation light:

• 8 piezo acoustic sensors to monitor the nucleation process:

SBC: possible strategy

• SBC-Fermilab: Build and commission detector Calibrate NR and ER

• SBC-SNOLAB: Build and install 2nd detector Low mass dark matter searches

• SBC-CE ν NS: Upgrade SBC-Fermilab detector Install at a reactor site for CE ν NS

SBC CE ν NS: physics reach

ININ 1MW Triga Mark-III reactor in Mexico

• Two sites explored: ININ and Laguna Verde

Setup	LAr mass (kg)	Power (MW _{th})	Distance (m)	Anti- ν flux uncertainty (%)	Threshold uncertainty (%)
А	10	1	3	2.4	5
В	100	2000	30	2.4	5
B(1.5)	100	2000	30	1.5	2

SBC Physics: $CE\nu NS$ reach

 Setup A: ~8 CEvNS/day at 100 eV
0.25 evts/day - reactor backgrounds
0.85 evts/day - cosmogenic
Shielding = 0.3m Pb, 0.25m H₂O,
0.5m Polyethene, 0.2m Pb

• Setup B:

 $\sim 1570 \text{ CE}\nu \text{NS/day}$ at 100 eV negligible reactor backgrounds (30m + shielding) 180 evts/day - cosmogenic Shielding = 3m H₂O, 0.5m Polyethen

SBC $CE\nu NS$ Physics: weak mixing angle

• Precision as good as 1% in the weak mixing angle, similar to APV.

- Conservative: one year exposure, 2.4% flux uncertainty, 5% threshold uncertainty (A: ININ 10 kg, B: Laguna Verde 100 kg)
- Aggresive 1.5% flux, 2% threshold (B(1.5): Laguna Verde 100 kg)

$$\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M_N Q_w^2 \left(2 - \frac{M_N T}{E_\nu^2}\right) F^2(q^2)$$

SBC $CE\nu NS$ Physics: Z' boson

• Most stringent bounds for new gauge vector bosons (20 MeV - 1 GeV and 70 - 230 GeV).

$$\mathcal{L}_{\rm eff} = -\frac{g^{\prime 2} Q_l Q_q}{q^2 + M_{Z^\prime}^2} \left[\sum_{\alpha} \bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\alpha} \right] \left[\sum_{q} \bar{q} \gamma_{\mu} q \right]$$

SBC CE ν NS Physics: ν magnetic moment

• $\mu_{\nu} = 5.4 \times 10^{-11} \mu_B$ (90% C.L.), similar to GEMMA and Borexino.

$$\frac{d\sigma}{dT} = \pi \frac{\alpha_{\rm EM}^2 Z^2 \mu_{\nu}^2}{m_e^2} \left(\frac{1}{T} - \frac{1}{E_{\nu}} + \frac{T}{4E_{\nu}^2} \right) F^2(q^2)$$

Physics reach of a low threshold scintillating argon bubble chamber in coherent elastic neutrino-nucleus scattering reactor experiments Phys. Rev. D 103, L091301 (2021)

SBC $CE\nu NS$: New Physics

Light scalar mediators

Sterile neutrino oscillations

New Physics searches in a low threshold scintillating argon bubble chamber measuring coherent elastic neutrino-nucleus scattering in reactors Phys. Rev. D 105, 113005 (2022)

SBC CE ν **NS: New Physics**

Unitarity violation

Non-standard interactions

New Physics searches in a low threshold scintillating argon bubble chamber measuring coherent elastic neutrino-nucleus scattering in reactors Phys. Rev. D 105, 113005 (2022)

Final remarks

- SBC is a 10 kg LAr bubble chamber: unique potential for reactor $CE\nu NS$ measurement with low backgrounds
 - -100 eV nuclear recoil detection
 - Rich $CE\nu NS$ physics programme: weak mixing angle, Z' boson, neutrino magnetic moment, sterile neutrinos, NSI, unitarity violation