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NuMI Oft-Axis v, Appearance Experiment (NOvVA)
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Muon neutrino beam at Fermilab near Chicago

Longest baseline in operation (810 km), large matter effect, sensitive to mass
ordering

Far/Near detector sited 14 mrad off-axis, narrow-band beam around oscillation
maximum



NOVA Detectors

Far Detector (FD):
* 14-kton, fine-grained _
* 344k detector cells -==" T ]
. . . To APD Readoui
0.3-kton functionally identical Near Detector (ND), ~20k cells
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Detectors are composed of PVC modules extruded to form long tube-like cells

Each cell: filled with liquid scintillator, has wavelength-shifting fiber (WLS) routed
to Avalanche Photodiode (APD)

Cells arranged in planes, assembled in alternating vertical and horizontal directions

- 3-D information of neutrino interactions



NOVA Event

* NOVA detector cells arranged in planes, 2 \5\,\;‘:\?@:@\3\
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CNN based Event Classifier (CVN)

CVN: a convolutional neural network (CNN), based on modern image recognition
technology, extract features directly from pixel maps

NOVA is the first HEP experiment to use CNNs to publish physics results:
Phys.Rev.Lett. 118 (2017)

Yielded an equivalent 30% increase in exposure than traditional methods

CVN output in the far detector MC
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A. Aurisano et. al, JINST 11, P09001 (2016)

== INCEPTION OUTPUT

Select v, (v,) CC and v, (V,) CC candidates from
neutrino (antineutrino) beam with CVN in Near
Detector (ND) and Far Detector (FD)
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Example Data Check: MRE

Data Numu

¢ " -.:
NOVA - FNAL E929 " L R NOVA - FNAL E929
- =

Run: 12238/4 : Run: 12238/4
Event: 79983 / -- - Event: 79983 / --

UTC Sat May 27, 2017 - UTC Sat May 27, 2017
12:35:28.816091584 " 12:35:28.816091584

600

Z (cm)
sl ]
i 1 Muon Removed - Electron Added:
—¢— Data i
o ] Select a muon neutrino interaction.
“g 40} — Remove the muon hits and replace
[ | with a simulated electron.
20 |
aeesssss. ssesseseseeee®®
% 1'21‘_ : Pre Selection Full Selection Efficiency
s I | " Data Events 486083 316009 0.6501
—% 57 04 06 03 — MC Events H11287 341119 0.6672

CVN v, Classifier



CNN based Particle Classifier (ProngCVN)

Cluster 3

M |
3 Single particles are currently
= uster 2 . .
rrseion @uge - e separated using geometric
e - reconstruction methods.
Cluster 1 - = Cluster 1 '-- -
TOP ' TOP SIDE SIDE

Classify particles using both - - - -

views of the particle and both
views of the entire event.

This shows the network — — — —
contextual information = - — =
about single particles. S
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Phys.Rev.D 100 (2019) 7, 073005



CNN based Particle Classifier (ProngCVN)
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Transformer for both Event and Particle Classification

Transformer CVN

» Transformer is attention-based network trained on vector of objects,
recently developed for Natural Language Processing in CS

« Deals with various types of inputs = combine pixel maps and particle level
information to produce event and particle classification

* The attention mechanism in Transformers can be used to study correlations
between inputs and outputs, makes each step in ML/AI based
reconstruction checkable and explainable
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Transformer for both Event and Particle

Classification (Transformer CVN)

Ve CC
Electron Muon
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Transformer CVN’s ROC curves for prong ID outperforms ProngCVN and event ID
are nearly identical to event CVN.
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Regression CNNs for Energy Estimation

« The CNN architecture used is an adapted ResNet
S— « Weighting scheme so the loss function sees a flat distribution >
Energy well control energy dependent bias
) » Use mean absolute percentage error instead of square of errors to
decrease the effects of outliers
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Regression CNNs for Energy Estimation

* Compared with traditional kinematics-based Q 02F 5 ; ANERERRRNE
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Also trained for electron energy, hadronic energy, v, Energy, etc



LSTM for Energy Estimation

Long Short-Term Memory (LSTM) is a type of recurrent neural network
Takes a number of traditional reconstruction quantities as inputs
Trained using calibration shifts to increase network resilience

Resolution comparable with regression CNN
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Full Event Reconstruction with Image

Segmentation

Full event reconstruct on a hit-by-hit basis
using instance segmentation:

— Bounds: Create a bounding box around each
particle with a Region-based CNN (RCNN)

— ID Score: Use a softmax function to classify the
particle contained within each box

___________

— Clusters: Group together hits, 1dentify hits, then

A ) X Muon 0.992
individual hits are combined to form clusters

* Very powertful in PID and clustering
efficiency, working on running at scale

¥ Electron 0.572



NOVA is the first HEP experiment to use CNNs to publish physics results:
Phys.Rev.Lett. 118 (2017)

In NOvVA, deep-learning has been developed to:
— Identify events and final state particles from beam and cosmic ray
backgrounds
— Reconstruct neutrino energy, final state particle energy, and other
kinematic variables
— Perform full event reconstruction

Other ongoing ML efforts in NOvA: Sparse and Graphical Neural
Networks, CNN for vertex reconstruction and cosmic ray rejection

NOVA has been performing expansive data comparison, impact analysis,
uncertainty studies and cross-checks to improve robustness and
interpretability of ML tools

/. /m/
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Other Efforts Regarding Machine Learning in NOvA

* Sparse and Graphical Neural Networks
* Regression CNN for vertex reconstruction

* ResNet for cosmic ray rejection

* Understanding generator biases in deep learning models, by
exploring other generators (NuWro, GIBUU, NEUT, etc)

* Improving traditional reconstruction with ML methods

Ve 93.21 99.71
Ve 928l 99.82
Vy 93.22 99.20
Vy 92.82 99.20
v NC 93.24 97.08
v NC 92.79 96.82

Cosmic v 7.80 5.00



CNN based Event Classifier (CVN

Color is Efficiency NOVA Prel | m | nary

Cosmic 0.00044 0.00064 0.0013

i, NC

0.017

Selected

Vi Ve Vo NC Cosmic



