

An automated QC station for the characterization of the Mu2e Calorimeter Readout Units

Elisa Sanzani on behalf of the Mu2e Calorimeter group ICHEP 2022 Bologna, July 6-13

Istituto Nazionale di Fisica Nucleare

Fermilab

The Mu2e experiment at FNAL

- ✓ A high momentum resolution 3 meter long Straw Tube Tracker, made of ~2 · 10⁴ straws arranged in 36 planes, suppresses the irreducible decay in orbit background
- ✓ A pure CsI Crystal Calorimeter complements the tracker information and provides excellent energy and time resolution
- A Cosmic Ray Veto surrounds the detector regions to identify incoming cosmic ray muons

INFŃ

The Mu2e Crystal Calorimeter

- The calorimeter adds <u>redundancy and complementary qualities</u> with respect to the tracking system:
 - ✓ Large acceptance for the mono-energetic electron candidate events
 - ✓ Particle Identification capabilities with μ /e rejection factor >200
 - ✓ Cluster-based seeding for track finding at high occupancy
 - $\checkmark\,$ Stand-alone online trigger capability
- <u>Working conditions</u>:
 - ✓ 10⁻⁴ Torr vacuum
 - ✓ 1T magnetic field
 - ✓ TiD up to 100 krad and neutron fluence 10^{12} n_{1MeV-eq}/cm²
- <u>Requirements</u>:
 - ✓ $\sigma_{\rm E}/{\rm E}$ < 10% @ 100 MeV
 - ✓ $\sigma_{\rm t}$ < 500 ps @ 100 MeV
 - ✓ $\sigma_{\rm x}$ < 1cm
 - Two annular disks, each one filled with 674 pure CsI crystals
 - ► 10X₀ crystal length (15X₀ at average arrival angle)
 - Readout via 2 UV-extended SiPM matrices per crystal
 - ► 10 crates/disk to host DAQ boards
 - ► SiPM + FEE fluid cooling down to -10° C (I_{dark} halves every 10°C reduction)

See D.Paesani's talk for more details about the Mu2e Calorimeter!

The Calorimeter Readout

Faraday cage

for shielding

Two Front End

Electronics

Boards (FEE)

Fiber optic coupler for the secondary distribution layer of the laser calibration system

Copper thermal block for SiPM cooling and for mechanical support

Two Hamamatsu UV-extended 2x3 matrices of SiPMs

Two independent readout channels per crystal, one per SiPM

→ Redundancy and higher light collection

SiPM: properties and QC

- 1 Mu2e SiPM = two 2x3 matrices of individual MPPCs of 6x6 mm²
- ▶ 14400 50 x 50 μm^2 pixels for each MPPC
- UV-extended (SPL) to match CsI emission peak at 315 nm
- Series/parallel MPPC connection to decrease equivalent capacitance by 1/3

Requirements:

INFN

- Gain >10⁶ at $V_{op} = V_{bd} + 3 V$
- 20% PDE at 300 nm
- MTTF > 10⁶ hours at 20°C
- Short pulse width

QC steps:

- Visual control + mechanical specifications
- V_{br} , I_{dark} , gain x PDE measured for each cell
- MTTF evaluation at 65°C for \sim 14 days
- 5 SiPM/batch underwent $10^{12} n_{1 {
 m MeV}-eq}/cm^2$ irradiation test
 - QC on all production SiPMs completed in late 2019 with < 2 % of out-of-specs components
 - More than 3000 SiPMs are now glued to their copper holders
 - \rightarrow Now being assembled in a ROU with the FEE boards

FEE: properties and QC

Properties:

- \checkmark Signal rise time > 25 ns for appropriate time reconstruction
- $\checkmark\,$ Rate capability up to 1 MHz, short fall time
- ✓ High stability SiPM management

- ✓ Radiation-hardness (100 krad TiD, 10¹² n_{1MeV-eq}/cm²)
- ✓ Programmable bias up to 200V via 12-bit DAC
- ✓ SiPM bias, current and temperature monitor via 12-bit ADC

Quality Controls: 6 hours burn-in test at 65°C + calibration (JINR + LNF)

Active Load Board to calibrate 20 FEE in one go

- Linear 2-point calibration of ADC and DAC
- Stress test with 2mA current
- Calibration of temperature and current monitors
- FEE pulsing to evaluate signal shape and gain linearity

accuracy on HV setpoint ±50 mV (1 LSB) after calibration

All FEEs have undergone the QC steps \rightarrow ready to be assembled in a ROU

E.Sanzani - Bologna, ICHEP 2022

Before ROUs are mounted to the calo disk, the overall chain SiPM + holder + FEEs + Faraday cage has to be tested and characterized:

- Verify each unit works properly (no broken parts, sparks)
- Characterize to see if gain and PDE meet the specs
- Build database for reference during data-taking

QC Station for the ROUs at LNF

✓ 420 nm Blu LED at 10kHz

INFN

- ✓ 9 position filter to attenuate the light intensity
- ✓ Sandblasted glass layers ensure uniform light diffusion on the SiPMs faces
- ✓ Metal box for light tightness
- $\checkmark~$ 2 ROUs mounted on an Al cooling plate and stabilized at 25 °C
- ✓ Mezzanine and DIRAC boards collect the signals from the FEEs
- ✓ The signal is acquired via USB through the Mezzanine board

QC Station software

- ✓ Python and C++ programs for data acquisition and live analysis
- ✓ High parallelization of jobs \Rightarrow 7 minutes/scan
- \checkmark GUI for fast scan setup and to quickly retrieve old results for validation checks

				Σ	Fee GUI		
OFF			Welcome to	the Mu2e	Fee Gui		MU2e
Worker:		-	Institution:	-	-		
Step Down:	0		Step Up:	0		Step Width [V]:	0.0
Holder 1 [HXXXX]			1			Holder 2 [HXXXX]	
Vop0_s0 [V]	0.0					Vop1_s0 [V]	0.0
Vop0_s1 [V]	0.0					Vop1_s1 [V]	0.0
Vread0_s0 [V]	0.0					Vread1_s0 [V]	0.0
Vread0_s1 [V]	0.0					Vread1_s1 [V]	0.0
Temp0_s0 [°C]	0.0					Temp1_s0 [°C]	0.0
Temp0_s1 [°C]	0.0					Temp1_s1 [°C]	0.0
		doScan		MZB C	FF		Quit
							Retrieve Canvas

<u>Scan</u>

- 9 filters scan per HV value \Rightarrow 10⁴ events acquired/HV point for each filter position
- 7 HV positions \Rightarrow V_{op} 4V to V_{op} + 2V in 1V intervals. Best compromise between scan time and #points

→ Study of SiPM Gain, Photon Detection Efficiency and total charge for every light intensity and bias voltage

Gain measurement

 \succ V_{bias} = V_{op}

Scan over the 9 filters

Gain from fit:
$$\frac{\sigma_Q}{Q}(Q) = \sqrt{\frac{p_0}{Q} + \frac{p_1^2}{Q^2} + p_2^2} \Rightarrow G = \frac{p_0}{q_{e[pc]}}$$

 \rightarrow Study of the ROU response at V_{op} and verify signals are as expected

E.Sanzani - Bologna, ICHEP 2022

HV scan

- ▶ Dependence of G, Q, PDE on $V_{bias} \Rightarrow 7$ HV points scan
- Important when V_{bias} will be changed after radiation damage (I_{dark} increase)

Scan quality parameters: $\chi^2/d.o.f. < 5 \&\& \Delta G/G < 2.5\% \rightarrow$ If not met, flag raised

Gain temperature dependence

Temperature sensor in the FEE \rightarrow Study of Gain vs T

- ➢ Found gain decrease of 1.6%/°C
- ightarrow As expected from previous studies of the SiPMs

Observed temperature variations in the QC station of ±2.5°C
 Correction of the saved gain data to 25°C

 $G_{corr} = G (1 + 0.016 \cdot (T - 25))$

Temperature correction tested on repeated measurements: \rightarrow Measurement reproducibility better than 2%

8/07/2022

E.Sanzani - Bologna, ICHEP 2022

ROUs consistency study

Evaluation of ROUs consistency

- \checkmark No significant variation along production
- ✓ No left/right FEE dependence
- ✓ Gain spread of O(3%)
- ✓ Average gain (3.54 ± 0.35)·10⁶

Control unit if gain: $< 3.0 \cdot 10^6$ or $> 4.2 \cdot 10^6$ \rightarrow verify that all components are working properly and that FEE-HV calibration is properly set

Conclusions

- \succ The Mu2e Calorimeter is ready for assembly \rightarrow first crystals have been stacked!
- ➢ ROUs scan continuing at the station: ~600/1400 done
- First 100 ROUs shipped to Fermilab, ready to be mounted on the first disk in the fall
- ➢ ROUs uniformity along production is of O(3%)
- Creation of a database with relevant info from this test underway
 - Gain + fit parameters
 - PDE + fit parameters
 - Temperature information
- > All the parts of the readout, and the ROUs as a whole, met specifications and requirements

→Ready to keep assembling the Mu2e Calorimeter and the Readout Units are also ready to go!