Revealing the Cosmic History with Gravitational Waves

Carlos Tamarit, Technische Universität München

arXiv:2203.00621

in collaboration with

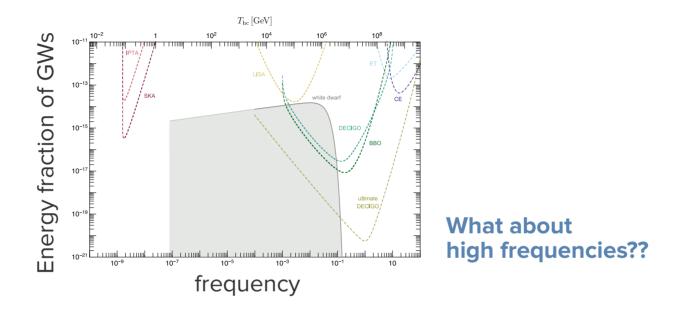
Andreas Ringwald, DESY

Building on previous work with Ringwald and:

Guillermo Ballesteros, IFT

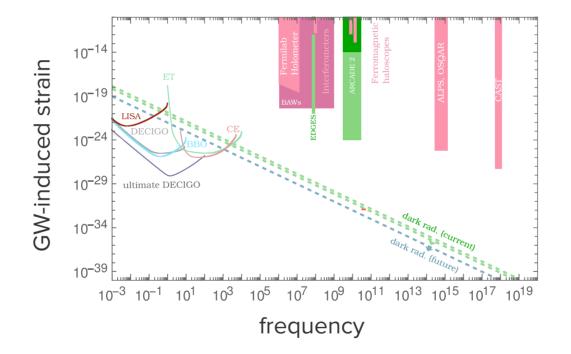
Yvette Welling, DESY

JCAP 09 (2021) 036


Jan-Schütte Engel, Urbana

JCAP 03 (2021) 054

Kenichi Saikawa, Kanazawa U


JCAP 02 (2021) 046

The experimental context

High freqs probe high-energy processes in early universe: inflation, reheating, plasma Weak interactions waves travel undisturbed: direct probe of primordial physics There are no known astrophysical sources at very high-frequencies

Current constraints at high frequencies

The aim

Motivate search for high-frequency gravitational waves (GWs)

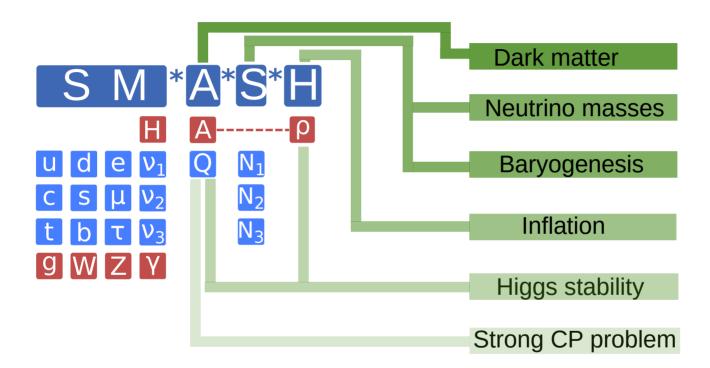
Provide a **benchmark** by computing the **complete spectrum** of stochastical **GWs** in a minimal and predictive extension of the SM, **SMASH**

The novelty

We are not aware of other calculations accounting for GWs from inflation, preheating and thermal fluctuations in a single model

(see however [Buchmüller et al])

The plan


SMASH

GW production in the early universe

Inflation Reheating Thermal fluctuations

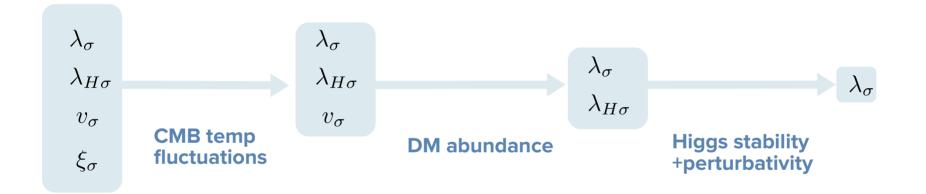
Overview of SMASH

Ballesteros, Redondo, Ringwald, CT 16

Single new mass scale, predictive cosmological history

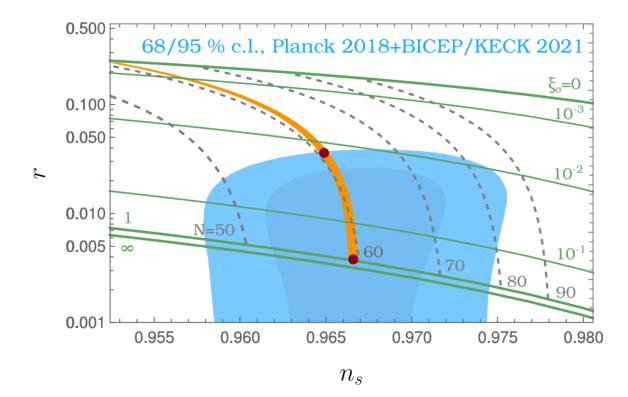
Addresses 6 problems in minimal, falsifiable package

$$\mathcal{L} \supset -\left[\frac{M^2}{2} + \xi_H H^{\dagger} H + \xi_{\sigma} |\sigma|^2\right] R$$


$$\frac{1}{2} + \xi_H H^{\dagger} H + \xi_{\sigma} |\sigma|^2 R + \lambda_H \left(H^{\dagger} H - \frac{v^2}{2}\right)^2 - 2\lambda_{H\sigma} \left(H^{\dagger} H - \frac{v^2}{2}\right) \left(|\sigma|^2 - \frac{v^2_{\sigma}}{2}\right) \text{ STABILITY}$$

$$\frac{1}{2} - \lambda_{\sigma} \left(|\sigma|^2 - \frac{v^2_{\sigma}}{2}\right)^2 - \left[y\sigma \tilde{Q}Q + y_{Q_{d_i}}\sigma Qd_i + c.c\right] \text{ CP, DARK MATTER}$$

$$-\left[F_{ij}L_i\epsilon HN_j + \frac{1}{2}Y_{ij}\sigma N_iN_j + c.c.\right] \text{ SEESAW AND LEPTOGENESIS}$$


Most general, renormalizable Lagrangian compatible with **global PQ symmetry**

For $\xi_H \ll \xi_\sigma$, approx. 1 free scalar parameter

Features of GW **spectra** in SMASH mainly **determined by bosonic BSM couplings**

CMB predictions in **SMASH**

Can choose r as free bosonic parameter. Will compute GW spectra for extremal values

Gravity waves in SMASH

What are gravitational waves?

Excitations of the metric field sourced by anisotropies in the stress-energy momentum tensor. In local Minkowski frame

$$ds^{2} \supset -dt^{2} + (\delta_{ij} + h_{ij})dx^{i}dx^{j}$$
$$\Box \left(h_{ij} - \frac{1}{2}\delta_{ij}h\right) = \frac{2}{M_{P}^{2}}T_{ij}^{\mathrm{TT}},$$
$$\partial^{i}h_{ij} = 0, \quad T^{\mathrm{TT}}{}_{i}^{i} = 0, \quad \partial^{i}T_{ij}^{\mathrm{TT}} = 0$$

$$\rho_{\rm gw} = \frac{M_P^2}{4} \left\langle \dot{h}_{ij}(t, \mathbf{x}) \, \dot{h}_{ij}(t, \mathbf{x}) \right\rangle$$

$$\Omega_{\rm gw} = \frac{\rho_{\rm gw}}{\rho_{\rm crit}} \equiv \int \frac{dk}{k} \Omega_{\rm gw}(k)$$

$$\rho_{\rm crit} = 3H^2 M_P^2$$

Sources of GWs in the SMASHY universe

Inflation

(Almost) no source term

Reheating

Nonperturbative scalar field fuctuations (inflaton fragmentation) contribute to T_{ij}^{TT} Need lattice simulations

Thermal excitations

Additional contributions to T_{ij}^{TT} from viscosity and quasi-particle excitations

Interdependence between sources

Inflation

sets the initial conditions for

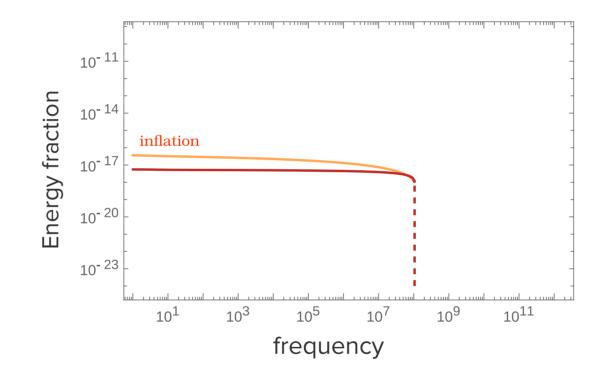
Reheating

which fixes the value of the reheating temperature and the scale of

Thermal excitations

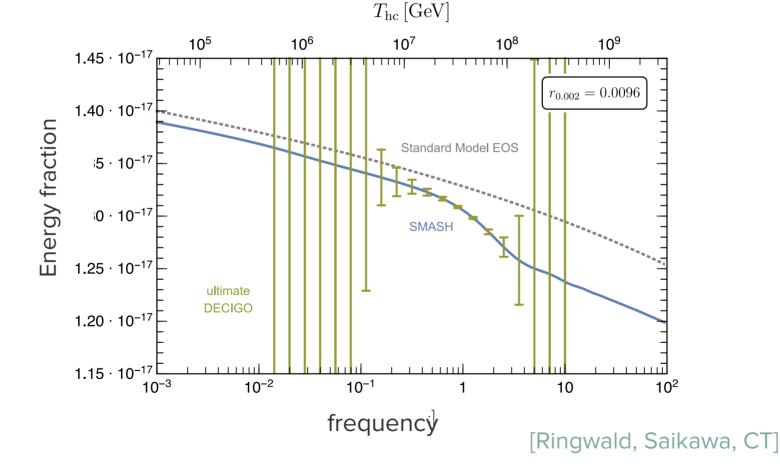
We expect correlations within SMASH of spectra coming from different sources

GWs from inflation

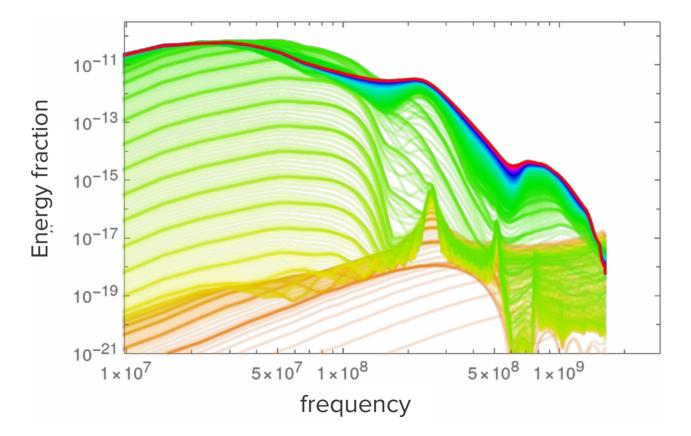

GWs from inflation: the bigger picture

$$\Omega_{\rm gw}(k) \approx \frac{1}{24} \Delta_{T,k,\rm prim}^2 \Omega_{\gamma} \left(\frac{g_{*\rho,\rm hc}}{2}\right) \left(\frac{g_{*s,\rm hc}}{g_{*s,0}}\right)^{-4/3}$$
Inflationary power spectrum (nearly flat)
$$\rho = \frac{\pi^2}{30} g_{*,\rho} T^4$$

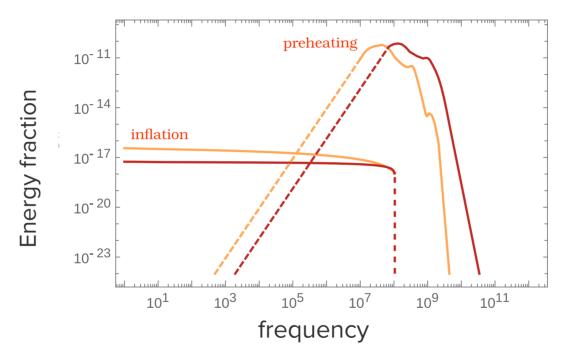
$$s = \frac{2\pi^2}{45} g_{*,s} T^3$$


Sudden changes in $g_{*o}g_{*s}$ (as in PQ transition) can lead to steps in power spectrum

GWs from inflation: the bigger picture

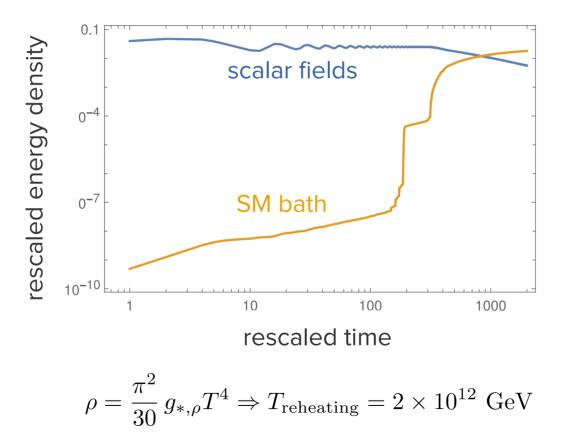

Spectrum tied to Hubble scale during inflation

The PQ transition affects inflationary GWs

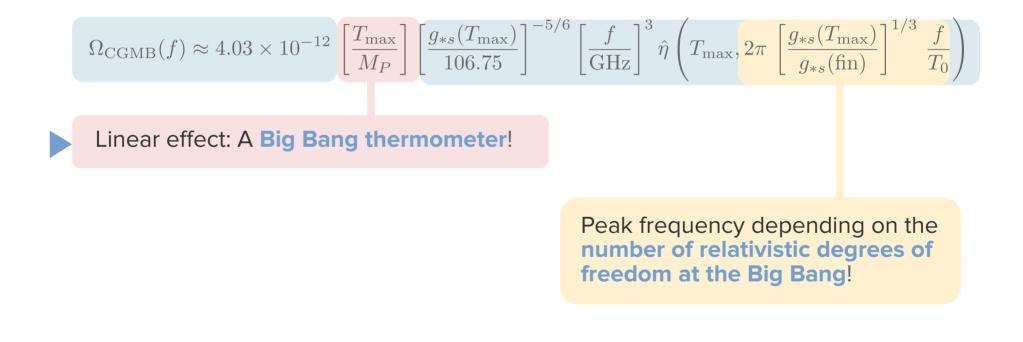


GWs from preheating

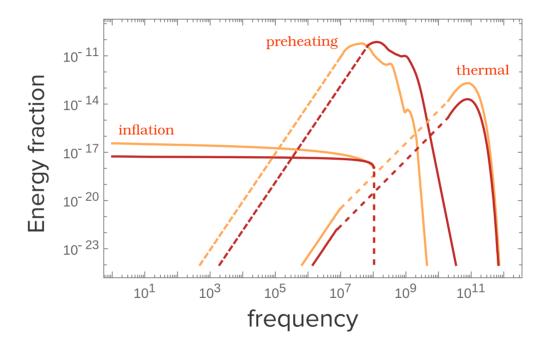
Results of lattice simulations


GWs from preheating: the bigger picture

Hubble scale during inflation

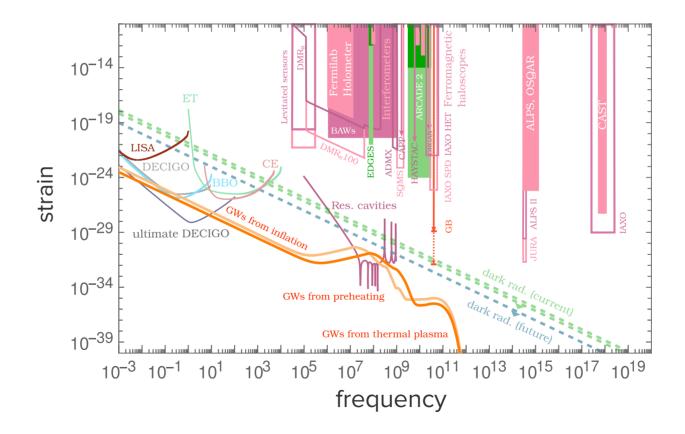

Hubble scale at inflation's end, length scale of inflaton fragmentation

Reheating temperature from simulations



GWs from thermal fluctuations

[Ghiglieri et al] [Ringwald, Schütte-Engel, CT]



GWs from thermal plasma: the bigger picture

Hubble scale during inflation
 Hubble scale at inflation's end, length scale of inflaton fragmentation
 Tmax and number of d.o.f. in hot Big Bang

Confronting with current and future experiments

High-frequency GWs can tell us about:

Hubble scale during and at the end of inflation

Scale of inflaton fragmentation

Reheating temperature and number of d.o.f.s in the primordial plasma

Second-order phase transitions in the early universe

SMASH provides a **conservative benchmark** that can hopefully motivate further efforts in the exploration of high-frequency GWs

CERN-TH-2020-185 HIP-2020-28/TH DESY 20-195

Challenges and Opportunities of Gravitational Wave Searches at MHz to GHz Frequencies

13 Dec 2021

N. Aggarwal^{a,*}, O.D. Aguiar^b, A. Bauswein^c, G. Cella^d, S. Clesse^e, A.M. Cruise^f, V. Domcke^{g,h,i,*},
D.G. Figueroa^j, A. Geraci^k, M. Goryachev^l, H. Grote^m, M. Hindmarsh^{n,o}, F. Muia^{p,i,*}, N. Mukund^q,
D. Ottaway^{r,s}, M. Peloso^{t,u}, F. Quevedo^{p,*}, A. Ricciardone^{t,u}, J. Steinlechner^{v,w,x,*}, S. Steinlechner^{v,w,*},
S. Sun^{y,z}, M.E. Tobar^l, F. Torrenti^α, C. Unal^β, G. White^γ

Thank you!