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● QFT setting – no strings or other non-QFT structures

Setup



● QFT setting – no strings or other non-QFT structures
● Diffeomorphism is like a gauge symmetry [Hehl et al.’76]

● Arbitrary local choices of coordinates do not affect 
observables – pure passive formulation

● Physical observables must be manifestly invariant 
[Fröhlich et al.’80]

Setup
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Dynamical formulation

● Integration variable currently arbitrary choice
● Here: Metric – not relevant at leading order
● Other choices (e.g. vierbein) possible

Z=∫
Ω
Dgμ νDϕ

aeiS [ϕ , e ]+iSEH [e ]

Standard gravity



Dynamical formulation

● Integration variable currently arbitrary choice
● Here: Metric – not relevant at leading order
● Other choices (e.g. vierbein) possible

Z=∫
Ω
Dgμ νDϕ

aeiS [ϕ , e ]+iSEH [e ]

Other fields

Standard gravityStandard gravity
coupling



Dynamical formulation

● Integration variable currently arbitrary choice
● Here: Metric – not relevant at leading order
● Other choices (e.g. vierbein) possible

● Otherwise standard
● E.g. Asymptotic safety for ultraviolet stability

Z=∫
Ω
Dgμ νDϕ

aeiS [ϕ , e ]+iSEH [e ]

Other fields

Standard gravityStandard gravity
coupling



Dynamical formulation
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Dynamical formulation

0≠⟨O ⟩=∫
Ω
Dgμ νD ϕ

aOeiS [ϕ , e ]+iSEH [e ]

Needs to be invariant
● Locally under Diffeomorphism
● Locally under Lorentz transformation
● Locally under gauge transformation
● Globally under custodial,… transformation
to be non-zero



Space-time structure

● Average metric vanishes: ⟨gμ ν(x)⟩=0

[Maas’19]
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Space-time structure

● Average metric vanishes:
● Characterization by invariants e.g.

● No preferred events
● Space-time on average homogenous and 

isotropic
● Average space-time is an observation, e.g. 

(anti-)de Sitter
● Invariants identify the particular type 

⟨gμ ν(x)⟩=0

⟨∫dd x √det g R (x)⟩

⟨∫dd x√det g⟩

[Maas’19]
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Simpelst object: Scalar

● Consider a scalar particle
● E.g. described by a scalar field
● Completely invariant
● Events not a useful argument

⟨O (x)O( y)⟩=D (x , y)

Argument is the event, not the coordinate

Result depends on events

O(x)

[Maas’19]



Simpelst object: Scalar

⟨O(x)O( y)⟩=D(r (x , y))

[Schaden’15,
 Ambjorn et al.’12]

Some distance function
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Simpelst object: Scalar

● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
● Needs to be determined separately

⟨O(x)O( y)⟩=D(r (x , y))
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y
d λ gμ ν

dzμ

d λ

dzν

d λ
⟩

Separate calculation

[Schaden’15,
 Ambjorn et al.’12
 Maas’19]



Simpelst object: Scalar

● Distance is a quantum object: Expectation value
● Needs a diff-invariant formulation
● Diff-invariant distance: Geodesic distance
● Needs to be determined separately

● Generalization of flat-space arguments

⟨O(x)O( y)⟩=D(r (x , y))

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ

dzν

d λ
⟩

[Schaden’15,
 Ambjorn et al.’12
 Maas’19]
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Fröhlich-Morchio-Strocchi mechanism
● Horrible complicated calculation
● FMS mechanism allows simplification

● Requires: Dominance of a configuration
● Usually: Classical solutions
● Depends on parameters

● FMS prescription:
● Chose a gauge compatible with the desired 

classical behavior
● Split after gauge-fixing fields such that they 

become classical fields plus quantum corrections
● Calculate order-by-order in quantum corrections

● Works very well in particle physics [Review: Maas’19a]

[Fröhlich et al.’80’81]
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● Our universe is well-approximated by a 
classical  metric

● Due to the parameter values – special!
● Small quantum fluctuations at large scales

● Empirical result
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Applying FMS

● Our universe is well-approximated by a 
classical  metric

● Due to the parameter values – special!
● Small quantum fluctuations at large scales

● Empirical result
● FMS split after (convenient) gauge fixing

●

● Classical part gc is a metric, chosen to give exact 
(observed) curvature

● Quantum part is assumed small
● Haywood gauge convenient

gμ ν=gμ ν
c

+γμ ν

[Maas’19
 Maas et al.’22]
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Distance

● Application to distance between two events
● Yields to leading order classical distance

● Yields at leading-order classical space-time
● Quantum corrections depends on events

r (x , y)=⟨minz∫x

y
d λ gμ ν

dzμ

d λ

dzν

d λ
⟩

=⟨minz∫x

y
d λ gμ ν

c dz
μ

d λ

dzν

d λ
⟩+⟨minz∫x

y
d λ γμ ν

dzμ

d λ

dzν

d λ
⟩

=rc(x , y)+⟨minz∫x

y
d λ γμ ν

dzμ

d λ

dzν

d λ
⟩=rc+δr

Classical geodesic
distance

Quantum corrections

[Maas’19]
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Propagators

● Double expansion
● Quantum fluctuations in the argument

⟨O(x)O( y)⟩=Dc (r
c
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nDc(r )+⟨O(x)O( y)⟩γ
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Propagators

● Double expansion
● Quantum fluctuations in the argument and action

⟨O(x)O( y)⟩=Dc (r
c
)+∑ (δ r)n∂r

nDc(r )+⟨O(x)O( y)⟩γ

Dc=⟨O (x)O ( y)⟩gc

Corrections from
metric fluctuations

[Maas’19]



Propagators

● Double expansion
● Quantum fluctuations in the argument and action
● Consistent with EDT results [Dai’22]

● Reduces to QFT at vanishing gravity
● Higgs and W/Z mass in quantum gravity calculated

⟨O(x)O( y)⟩=Dc (r
c
)+∑ (δ r)n∂r

nDc(r )+⟨O(x)O( y)⟩γ

Dc=⟨O (x)O ( y)⟩gc

[Maas’19]
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Non-trivial geon

● Pure gravity excitation: Curvature-
curvature correlator

● In Minkowski space-time: No 
propagating mode at lowest order

● Flat space: Better divergence properties 
[Maas & Sondenheimer’20]

⟨R(x)R( y)⟩=Dμ νρσ
⟨ γμ ν(x)γρσ( y)⟩(d (x , y))+O(γ

3
)

Graviton propagator

Differential operator

[Maas et al.’22]
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Predictions for CDT

● CDT vertex structure can be mapped to 
events

● Allows reconstruction of metric in a fixed 
gauge on every configuration

● deSitter structure observed in CDT
● Metric fluctuations per configuration should 

be small compared to de Sitter metric
● Geon propagator should behave as 

contracted metric propagator
● As a function of the geodesic distance



Summary

● Full invariance necessary for physical 
observables in path integrals

● FMS mechanism allows estimates of 
quantum effects in a systematic 
expansion

● Gives a new perspective on quantum 
gravity testable by simulations

More: 2202.05117, 1908.02140
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