A new approach to Observables in Quantum Gravity

Axel Maas

July 2022 ICHEP Bologna, Italy

Setup

• QFT setting – no strings or other non-QFT structures

Setup

- QFT setting no strings or other non-QFT structures
- Diffeomorphism is like a gauge symmetry [Hehl et al.'76]
 - Arbitrary local choices of coordinates do not affect observables – pure passive formulation
 - Physical observables must be manifestly invariant [Fröhlich et al.'80]

$Z = \int_{\Omega} Dg_{\mu\nu} D\phi^a e^{iS[\phi,e] + iS_{EH}[e]}$

Standard gravity

$$Z = \int_{\Omega} Dg_{\mu\nu} D\phi^a e^{iS[\phi,e] + iS_{EH}[e]}$$

- Integration variable currently arbitrary choice
 - Here: Metric not relevant at leading order
 - Other choices (e.g. vierbein) possible

- Integration variable currently arbitrary choice
 - Here: Metric not relevant at leading order
 - Other choices (e.g. vierbein) possible

- Integration variable currently arbitrary choice
 - Here: Metric not relevant at leading order
 - Other choices (e.g. vierbein) possible
- Otherwise standard
 - E.g. Asymptotic safety for ultraviolet stability

 $\langle O \rangle = \int_{\Omega} Dg_{\mu\nu} D \phi^a O e^{iS[\phi,e] + iS_{EH}[e]}$

$0 \neq \langle O \rangle = \int_{\Omega} Dg_{\mu\nu} D \phi^a O e^{iS[\phi,e] + iS_{EH}[e]}$

$\bigoplus_{\mathbf{A}} \neq \langle O \rangle = \int_{\Omega} Dg_{\mu\nu} D \phi^{a} O e^{iS[\phi, e] + iS_{EH}[e]}$

Needs to be invariant

- Locally under Diffeomorphism
- Locally under Lorentz transformation
- Locally under gauge transformation
- Globally under custodial,... transformation to be non-zero

• Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$

- Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$
- Characterization by invariants e.g.

$$\frac{\langle \int d^d x \sqrt{\det g} R(x) \rangle}{\langle \int d^d x \sqrt{\det g} \rangle}$$

- Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$
- Characterization by invariants e.g.

 $\frac{\langle \int d^d x \sqrt{\det g} R(x) \rangle}{\langle \int d^d x \sqrt{\det g} \rangle}$

• No preferred events

- Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$
- Characterization by invariants e.g.

$$\frac{\langle \int d^d x \sqrt{\det g} R(x) \rangle}{\langle \int d^d x \sqrt{\det g} \rangle}$$

- No preferred events
 - Space-time on average homogenous and isotropic
 - Average space-time is an observation, e.g. (anti-)de Sitter

- Average metric vanishes: $\langle g_{\mu\nu}(x) \rangle = 0$
- Characterization by invariants e.g.

$$\frac{\langle \int d^d x \sqrt{\det g} R(x) \rangle}{\langle \int d^d x \sqrt{\det g} \rangle}$$

- No preferred events
 - Space-time on average homogenous and isotropic
 - Average space-time is an observation, e.g. (anti-)de Sitter
 - Invariants identify the particular type

[Maas'19]

Simpelst object: Scalar

- Consider a scalar particle
 - E.g. described by a scalar field
 - Completely invariant

[Maas'19]

Simpelst object: Scalar

$$\langle O(x)O(y)\rangle = D(x,y)$$

- Consider a scalar particle
 - E.g. described by a scalar field O(x)
 - Completely invariant

$$\langle O(x)O(y)\rangle = D(x,y)$$

Completely scalar: Invariant under all symmetries

- Consider a scalar particle
 - E.g. described by a scalar field O(x)
 - Completely invariant

Argument is the event, not the coordinate

Result depends on events

 $\langle O(x)O(y)\rangle = D(x, y)$

- Consider a scalar particle
 - E.g. described by a scalar field O(x)
 - Completely invariant

Argument is the event, not the coordinate

Result depends on events

 $\langle O(x)O(y)\rangle = D(x, y)$

- Consider a scalar particle
 - E.g. described by a scalar field O(x)
 - Completely invariant
 - Events not a useful argument

[Schaden'15, Ambjorn et al.'12]

Some distance function

 $\langle O(x)O(y)\rangle = D(r(x,y))$

[Schaden'15, Ambjorn et al.'12]

$\langle O(x)O(y)\rangle = D(r(x,y))$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation

$$\langle O(x)O(y)\rangle = D(r(x,y))$$
$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance

 $\langle \mathbf{O}(\mathbf{v}) \mathbf{O}(\mathbf{v}) \rangle = \mathbf{D}(\mathbf{v}(\mathbf{v}))$

$$\langle O(x)O(y)\rangle = D(r(x,y))$$

$$r(x,y) = \langle min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
Select geodesic

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance

$$\langle O(x)O(y)\rangle = D(r(x,y))$$
 Separate calculation
$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance
 - Needs to be determined separately

$$\langle O(x)O(y)\rangle = D(r(x,y))$$
$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

- Distance is a quantum object: Expectation value
 - Needs a diff-invariant formulation
 - Diff-invariant distance: Geodesic distance
 - Needs to be determined separately
- Generalization of flat-space arguments

[Fröhlich et al.'80'81]

Horrible complicated calculation

- Horrible complicated calculation
- FMS mechanism allows simplification

- Horrible complicated calculation
- FMS mechanism allows simplification
 - Requires: Dominance of a configuration
 - Usually: Classical solutions

- Horrible complicated calculation
- FMS mechanism allows simplification
 - Requires: Dominance of a configuration
 - Usually: Classical solutions
 - Depends on parameters

- Horrible complicated calculation
- FMS mechanism allows simplification
 - Requires: Dominance of a configuration
 - Usually: Classical solutions
 - Depends on parameters
- FMS prescription:
 - Chose a gauge compatible with the desired classical behavior
 - Split after gauge-fixing fields such that they become classical fields plus quantum corrections
 - Calculate order-by-order in quantum corrections

- Horrible complicated calculation
- FMS mechanism allows simplification
 - Requires: Dominance of a configuration
 - Usually: Classical solutions
 - Depends on parameters
- FMS prescription:
 - Chose a gauge compatible with the desired classical behavior
 - Split after gauge-fixing fields such that they become classical fields plus quantum corrections
 - Calculate order-by-order in quantum corrections
- Works very well in particle physics [Review: Maas'19a]

[Maas'19 Maas et al.'22]

Applying FMS

- Our universe is well-approximated by a classical metric
 - Due to the parameter values special!
 - Small quantum fluctuations at large scales
 - Empirical result

Applying FMS

- Our universe is well-approximated by a classical metric
 - Due to the parameter values special!
 - Small quantum fluctuations at large scales
 Empirical result
- FMS split after (convenient) gauge fixing
 - $g_{\mu\nu} = g^c_{\mu\nu} + \gamma_{\mu\nu}$
 - Classical part g^c is a metric, chosen to give exact (observed) curvature
 - Quantum part is assumed small
 - Haywood gauge convenient

[Maas'19]

Distance

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

Application to distance between two events

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu}^{c} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$

Application to distance between two events

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu}^{c} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= r^{c}(x,y) + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle = r^{c} + \delta r$$

Classical geodesic distance

- Application to distance between two events
 - Yields to leading order classical distance

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu}^{c} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= r^{c}(x,y) + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle = r^{c} + \delta r$$

[Maas'19]

Classical geodesic distance

- Application to distance between two events
 - Yields to leading order classical distance
 - Yields at leading-order classical space-time

$$r(x,y) = \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= \langle \min_{z} \int_{x}^{y} d\lambda g_{\mu\nu}^{c} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle$$
$$= r^{c}(x,y) + \langle \min_{z} \int_{x}^{y} d\lambda \gamma_{\mu\nu} \frac{dz^{\mu}}{d\lambda} \frac{dz^{\nu}}{d\lambda} \rangle = r^{c} + \delta r$$

Classical geodesic distance

- Quantum corrections
- Application to distance between two events
 - Yields to leading order classical distance
 - Yields at leading-order classical space-time
 - Quantum corrections depends on events

 $\langle O(x)O(y) \rangle$

[Maas'19]

$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$

Double expansion

$$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$$

Leading term is $D_c = \langle O(x) O(y) \rangle_{g^c}$ flat space propagator

• Double expansion

Corrections from quantum distance effects

$$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$$

$$D_c = \langle O(x) O(y) \rangle_{g^c}$$

- Double expansion
 - Quantum fluctuations in the argument

Corrections from metric fluctuations

$$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$$

$$D_c = \langle O(x) O(y) \rangle_{g^c}$$

- Double expansion
 - Quantum fluctuations in the argument and action

$\langle O(x)O(y)\rangle = D_c(r^c) + \sum (\delta r)^n \partial_r^n D_c(r) + \langle O(x)O(y)\rangle_{\gamma}$

$$D_c = \langle O(x) O(y) \rangle_{g^c}$$

- Double expansion
 - Quantum fluctuations in the argument and action
 - Consistent with EDT results [Dai'22]
- Reduces to QFT at vanishing gravity
 - Higgs and W/Z mass in quantum gravity calculated

 Pure gravity excitation: Curvaturecurvature correlator

 Pure gravity excitation: Curvaturecurvature correlator

 $\langle R(x)R(y)\rangle$

 Pure gravity excitation: Curvaturecurvature correlator

$$\langle R(x)R(y)\rangle = D^{\mu\nu\rho\sigma}\langle \gamma_{\mu\nu}(x)\gamma_{\rho\sigma}(y)\rangle (d(x,y)) + O(\gamma^3)$$

• Pure gravity excitation: Curvaturecurvature correlator

Differential operator

$$\langle R(x)R(y)\rangle = D^{\mu\nu\rho\sigma} \langle \gamma_{\mu\nu}(x)\gamma_{\rho\sigma}(y)\rangle (d(x,y)) + O(\gamma^3)$$

Graviton propagator

• Pure gravity excitation: Curvaturecurvature correlator

Differential operator

$$\langle R(x)R(y)\rangle = D^{\mu\nu\rho\sigma} \langle \gamma_{\mu\nu}(x)\gamma_{\rho\sigma}(y)\rangle (d(x,y)) + O(\gamma^3)$$

Graviton propagator

• In Minkowski space-time: No propagating mode at lowest order

 Pure gravity excitation: Curvaturecurvature correlator

Differential operator

$$\langle R(x)R(y)\rangle = D^{\mu\nu\rho\sigma} \langle \gamma_{\mu\nu}(x)\gamma_{\rho\sigma}(y)\rangle (d(x,y)) + O(\gamma^3)$$

Graviton propagator

- In Minkowski space-time: No propagating mode at lowest order
- Flat space: Better divergence properties

Predictions for CDT

- CDT vertex structure can be mapped to events
 - Allows reconstruction of metric in a fixed gauge on every configuration

Predictions for CDT

- CDT vertex structure can be mapped to events
 - Allows reconstruction of metric in a fixed gauge on every configuration
- deSitter structure observed in CDT
 - Metric fluctuations per configuration should be small compared to de Sitter metric

Predictions for CDT

- CDT vertex structure can be mapped to events
 - Allows reconstruction of metric in a fixed gauge on every configuration
- deSitter structure observed in CDT
 - Metric fluctuations per configuration should be small compared to de Sitter metric
- Geon propagator should behave as contracted metric propagator
 - As a function of the geodesic distance

Summary

 Full invariance necessary for physical observables in path integrals

 FMS mechanism allows estimates of quantum effects in a systematic expansion

Gives a new perspective on quantum gravity testable by simulations

More: 2202.05117, 1908.02140