A new approach to Observables

 in Quantum GravityAxel Maas

July 2022
ICHEP
Bologna, Italy

NAWI Graz
Natural Sciences

Setup
 - QFT setting - no strings or other non-QFT structures

Setup

- QFT setting - no strings or other non-QFT structures
- Diffeomorphism is like a gauge symmetry ${ }_{\text {[Henletal: } 176]}$
- Arbitrary local choices of coordinates do not affect observables - pure passive formulation
- Physical observables must be manifestly invariant [Fröhlich et al.'80]

Dynamical formulation

$$
Z=\int_{\Omega} D g_{\mu \nu} D \phi^{a} e^{i\left[[\phi, e]+i i_{E H}[e]\right.}
$$

Dynamical formulation

Standard gravity

$$
Z=\int_{\Omega} D g_{\mu v} D \phi^{a} e^{i S[\phi, e]+i S_{E H}[e]}
$$

- Integration variable currently arbitrary choice
- Here: Metric - not relevant at leading order
- Other choices (e.g. vierbein) possible

Dynamical formulation

Standard gravity Standard gravity Other fields

$$
Z=\int_{\Omega} D g_{\mu v} \hat{D} \phi^{a} e^{i \dot{S}^{\dot{S}}[\phi, e]+\dot{S_{E H}}[e]}
$$

- Integration variable currently arbitrary choice
- Here: Metric - not relevant at leading order
- Other choices (e.g. vierbein) possible

Dynamical formulation

Standard gravity Standard gravity Other fields

$$
Z=\int_{\Omega} D g_{\mu v} \hat{D} \phi^{a} e^{i \stackrel{\rightharpoonup}{S}[\phi, e]+i S_{E H}[e]}
$$

- Integration variable currently arbitrary choice
- Here: Metric - not relevant at leading order
- Other choices (e.g. vierbein) possible
- Otherwise standard
- E.g. Asymptotic safety for ultraviolet stability

Dynamical formulation

$$
\langle O\rangle=\int_{\Omega} D g_{\mu v} D \phi^{a} O e^{i S[\phi, e]+i S_{E H}[e]}
$$

Dynamical formulation

$$
0 \neq\langle O\rangle=\int_{\Omega} D g_{\mu \nu} D \phi^{a} O e^{i S[\phi, e]+i S_{E \mu}[e]}
$$

Dynamical formulation

$0 \neq\langle O\rangle=\int_{\Omega} D g_{\mu \nu} D \phi_{V}^{a} O e^{i S[\phi, e]+i S_{E H}[e]}$

Needs to be invariant

- Locally under Diffeomorphism
- Locally under Lorentz transformation
- Locally under gauge transformation
- Globally under custodial,... transformation to be non-zero

Space-time structure

- Average metric vanishes: $\left\langle g_{\mu v}(x)\right\rangle=0$

Space-time structure

- Average metric vanishes: $\left\langle g_{\mu v}(x)\right\rangle=0$
- Characterization by invariants e.g.

$$
\frac{\left\langle\int d^{d} x \sqrt{\operatorname{det} g} R(x)\right\rangle}{\left\langle\int d^{d} x \sqrt{\operatorname{det} g}\right\rangle}
$$

Space-time structure

- Average metric vanishes: $\left\langle g_{\mu v}(x)\right\rangle=0$
- Characterization by invariants e.g.

$$
\frac{\left\langle\int d^{d} x \sqrt{\operatorname{det} g} R(x)\right\rangle}{\left\langle\int d^{d} x \sqrt{\operatorname{det} g}\right\rangle}
$$

- No preferred events

Space-time structure

- Average metric vanishes: $\left\langle g_{\mu v}(x)\right\rangle=0$
- Characterization by invariants e.g.

$$
\frac{\left\langle\int d^{d} x \sqrt{\operatorname{det} g} R(x)\right\rangle}{\left\langle\int d^{d} x \sqrt{\operatorname{det} g}\right\rangle}
$$

- No preferred events
- Space-time on average homogenous and isotropic
- Average space-time is an observation, e.g. (anti-)de Sitter

Space-time structure

- Average metric vanishes: $\left\langle g_{\mu v}(x)\right\rangle=0$
- Characterization by invariants e.g.

$$
\frac{\left\langle\int d^{d} x \sqrt{\operatorname{det} g} R(x)\right\rangle}{\left\langle\int d^{d} x \sqrt{\operatorname{det} g}\right\rangle}
$$

- No preferred events
- Space-time on average homogenous and isotropic
- Average space-time is an observation, e.g. (anti-)de Sitter
- Invariants identify the particular type
- Consider a scalar particle
- E.g. described by a scalar field
- Completely invariant

Simpelst object: Scalar

$\langle O(x) O(y)\rangle=D(x, y)$

- Consider a scalar particle
- E.g. described by a scalar field $O(x)$
- Completely invariant

Simpelst object: Scalar

$\langle O(x) O(y)\rangle=D(x, y)$
Completely scalar: Invariant under all symmetries

- Consider a scalar particle
- E.g. described by a scalar field $O(x)$
- Completely invariant

Simpelst object: Scalar

Argument is the event, not the coordinate

Result depends on events

$\langle O(x) O(\hat{y})\rangle=D(x, \hat{y})$

- Consider a scalar particle
- E.g. described by a scalar field $O(x)$
- Completely invariant

Simpelst object: Scalar

Argument is the event, not the coordinate

Result depends on events

$\langle O(x) O(\hat{y})\rangle=D(x, \hat{y})$

- Consider a scalar particle
- E.g. described by a scalar field $O(x)$
- Completely invariant
- Events not a useful argument

Some distance function

$$
\langle O(x) O(y)\rangle=D(r(x, y))
$$

Simpelst object: Scalar

```
\langleO(x)O(y)\rangle=D(r(x,y))
```

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation

Simpelst object: Scalar

$$
\begin{gathered}
\langle O(x) O(y)\rangle=D(r(x, y)) \\
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle
\end{gathered}
$$

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance

Simpelst object: Scalar

$$
\begin{gathered}
\langle O(x) O(y)\rangle=D(r(x, y)) \\
r(x, y)=\left\langle\min _{z^{z}} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle
\end{gathered}
$$

Select geodesic

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance

Simpelst object: Scalar

$\langle O(x) O(y)\rangle=D(r(x, y)) \quad$ Separate calculation
$r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle$

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance
- Needs to be determined separately

Simpelst object: Scalar

$\langle O(x) O(y)\rangle=D(r(x, y))$
$r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle$

- Distance is a quantum object: Expectation value
- Needs a diff-invariant formulation
- Diff-invariant distance: Geodesic distance
- Needs to be determined separately
- Generalization of flat-space arguments

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification
- Requires: Dominance of a configuration
-Usually: Classical solutions

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification
- Requires: Dominance of a configuration
- Usually: Classical solutions
- Depends on parameters

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification
- Requires: Dominance of a configuration
-Usually: Classical solutions
- Depends on parameters
- FMS prescription:
- Chose a gauge compatible with the desired classical behavior
- Split after gauge-fixing fields such that they become classical fields plus quantum corrections
- Calculate order-by-order in quantum corrections

Fröhlich-Morchio-Strocchi mechanism

- Horrible complicated calculation
- FMS mechanism allows simplification
- Requires: Dominance of a configuration
- Usually: Classical solutions
- Depends on parameters
- FMS prescription:
- Chose a gauge compatible with the desired classical behavior
- Split after gauge-fixing fields such that they become classical fields plus quantum corrections
- Calculate order-by-order in quantum corrections
- Works very well in particle physics

Applying FMS

- Our universe is well-approximated by a classical metric
- Due to the parameter values - special!
- Small quantum fluctuations at large scales
- Empirical result

Applying FMS

- Our universe is well-approximated by a classical metric
- Due to the parameter values - special!
- Small quantum fluctuations at large scales
- Empirical result
- FMS split after (convenient) gauge fixing
- $g_{\mu \nu}=g_{\mu \nu}^{c}+\gamma_{\mu \nu}$
- Classical part g^{c} is a metric, chosen to give exact (observed) curvature
- Quantum part is assumed small
- Haywood gauge convenient

Distance

$$
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle
$$

- Application to distance between two events

Distance

$$
\begin{gathered}
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu \nu} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu \nu}^{c} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu \nu} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle
\end{gathered}
$$

- Application to distance between two events

Distance

$$
\begin{gathered}
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v}^{c} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=r^{c}(x, y)+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle=r^{c}+\delta r
\end{gathered}
$$

Classical geodesic distance

- Application to distance between two events
- Yields to leading order classical distance

Distance

$$
\begin{gathered}
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v}^{c} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=r^{c}(x, y)+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle=r^{c}+\delta r
\end{gathered}
$$

Classical geodesic distance

- Application to distance between two events
- Yields to leading order classical distance
- Yields at leading-order classical space-time

Distance

$$
\begin{gathered}
r(x, y)=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v} \frac{d z^{\mu}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=\left\langle\min _{z} \int_{x}^{y} d \lambda g_{\mu v}^{c} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle \\
=r^{c}(x, y)+\left\langle\min _{z} \int_{x}^{y} d \lambda \gamma_{\mu v} \frac{d z^{u}}{d \lambda} \frac{d z^{v}}{d \lambda}\right\rangle=r^{c}+\delta r
\end{gathered}
$$

Classical geodesic distance

- Application to distance between two events
- Yields to leading order classical distance
- Yields at leading-order classical space-time
- Quantum corrections depends on events

Propagators

$\langle O(x) O(y)\rangle$

Propagators

- Double expansion

Propagators

Leading term is

$$
D_{c}=\langle O(x) O(y)\rangle_{g^{c}}
$$

flat space propagator

- Double expansion

Propagators

Corrections from quantum distance effects

$$
\begin{gathered}
\langle O(x) O(y)\rangle=D_{c}\left(r^{c}\right)+\sum(\hat{\delta r})^{n} \partial_{r}^{n} D_{c}(r)+\langle O(x) O(y)\rangle_{\gamma} \\
D_{c}=\langle O(x) O(y)\rangle_{g^{c}}
\end{gathered}
$$

- Double expansion
- Quantum fluctuations in the argument

Propagators

Corrections from metric fluctuations

$$
\begin{gathered}
\langle O(x) O(y)\rangle=D_{c}\left(r^{c}\right)+\sum(\delta r)^{n} \partial_{r}^{n} D_{c}(r)+\langle O(x) O(y)\rangle_{\gamma} \\
D_{c}=\langle O(x) O(y)\rangle_{g^{c}}
\end{gathered}
$$

- Double expansion
- Quantum fluctuations in the argument and action

Propagators

$\langle O(x) O(y)\rangle=D_{c}\left(r^{c}\right)+\sum(\delta r)^{n} \partial_{r}^{n} D_{c}(r)+\langle O(x) O(y)\rangle_{\gamma}$

$$
D_{c}=\langle O(x) O(y)\rangle_{g^{c}}
$$

- Double expansion
- Quantum fluctuations in the argument and action
- Consistent with EDT results [apiz2]
- Reduces to QFT at vanishing gravity
- Higgs and W/Z mass in quantum gravity calculated
- Pure gravity excitation: Curvaturecurvature correlator
- Pure gravity excitation: Curvaturecurvature correlator
$\langle R(x) R(y)\rangle$

Non-trivial geon

- Pure gravity excitation: Curvaturecurvature correlator

$$
\langle R(x) R(y)\rangle=D^{\mu \nu \rho \sigma}\left\langle\gamma_{\mu \nu}(x) \gamma_{\rho \sigma}(y)\right\rangle(d(x, y))+O\left(\gamma^{3}\right)
$$

Non-trivial geon

- Pure gravity excitation: Curvaturecurvature correlator

Differential operator
$\langle R(x) R(y)\rangle=D^{\mu v \stackrel{\rightharpoonup}{\rho}}\left\langle\gamma_{\mu \nu}(x) \gamma_{\rho \sigma}(y)\right\rangle(d(x, y))+O\left(\gamma^{3}\right)$

Graviton propagator

Non-trivial geon

- Pure gravity excitation: Curvaturecurvature correlator

Differential operator
$\langle R(x) R(y)\rangle=D^{\mu v \rho \sigma}\left\langle\gamma_{\mu \nu}(x) \gamma_{\rho \sigma}(y)\right\rangle(d(x, y))+O\left(\gamma^{3}\right)$
Graviton propagator

- In Minkowski space-time: No propagating mode at lowest order

Non-trivial geon

- Pure gravity excitation: Curvaturecurvature correlator

Differential operator
$\langle R(x) R(y)\rangle=D^{\mu v \rho \sigma}\left\langle\gamma_{\mu \nu}(x) \gamma_{\rho \sigma}(y)\right\rangle(d(x, y))+O\left(\gamma^{3}\right)$
Graviton propagator

- In Minkowski space-time: No propagating mode at lowest order
- Flat space: Better divergence properties

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration
- deSitter structure observed in CDT
- Metric fluctuations per configuration should be small compared to de Sitter metric

Predictions for CDT

- CDT vertex structure can be mapped to events
- Allows reconstruction of metric in a fixed gauge on every configuration
- deSitter structure observed in CDT
- Metric fluctuations per configuration should be small compared to de Sitter metric
- Geon propagator should behave as contracted metric propagator
- As a function of the geodesic distance

Summary

- Full invariance necessary for physical observables in path integrals
- FMS mechanism allows estimates of quantum effects in a systematic expansion
- Gives a new perspective on quantum gravity testable by simulations

More: $2202.05117,1908.02140$

