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Randall-Sundrum model

Consider a slice of Anti-de Sitter (AdS)
space compacted on an S, /Z, orbifold:

ds® = e_QA(y>77Wd:C“da:”—dy2 _

—2ky

auelq Y|

—L<y<L

with a reflection symmetry in the y-

coordinate of the extra dimension :
A

A(y) = A(ly]) b=\ "1 WL~ 35

For an exponential warped factor A(y) = k lyl, the action for the Higgs at the
IR brane can be written as:

S = /d4xe4kL [e%LnW@“’H@”H — A (HTH - 112)2]

Randall and Sundrum PRL (1999)
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Metric in RS]

1 1
Einstein Equation| Ryn — §QMNR = 53 LMN
1
(uv) 3(A" —247) = SVE (A4+Apd(y) +A_d0(y— L))
A/\‘ | \ /
(55) 6A"% = cOSMOIOSY prane tensions

QM3  constant

We obtain the solutions for the vacuum Einstein equation:

A
Aly) = \/—12M3|y\ =klyl A=A =12M7%k

A few facts:

First of all, no radion stabilization yet. An orbifold symmetry 1s imposed
and the bulk cosmology constant must be negative. The brane tension 1s
positive at the UV (y=0) but negative at the IR (y=L).
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Multiple branes Extension

One needs to add two non-fixed
point branes at y = &r given
that the cosmology constants
are different (A; # A>) in the Ao A A A

two spatial regions.

2 M oMo
1 12M3 2 12M3
y=—L Y= —r y=20 y=r
A = 12M%ky, A_ = —12M°k,
The metric without stabilization is :
ko — k
)\ir:12M322 - ko ly O<y<r

kgy—I-(kl—kg)T r<y<L

\

In this geometry how many

degrees of Freedom for the
cadion field ? Kogan et al NPB (2002)
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Graviton-Scalar sgstem

We start with the generic five dimensional action for the graviton coupling to
a single bulk scalar field:

Einstein-Hilbert action Matter action

i :

Lo ZGQMN3M¢3N¢ — V(C@

\/% Z Ai(@)d(y — i)
yz — {O,::?",L}

GW scalar action

V(¢) : Ay, Ao, m2,---

AN

A\i(¢) : brane terms

aueiq Y|

ou¥lq 9|pp!

DeWolfe, Freedman et al PRD (2000)
Csaki, Graesser and Kribs PRD (2001)

0< |yl <L
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Graviton~5¢a|ar system

The Line Element 1n the multibrane model that can decouple the graviton and
radion 1s :

ds? = e W2 EY) v + 2e(y)0,.0, f ()
+ b (z,y)] datde” — 1+ G(z,y)]” dy’

h,, : perturbation of graviton

F(z,y),G(x,y),€e(y) : Radion mode

By varying the action with respect to the 5d metric, one derives Einstein’s
equation 1n terms of Ricci tensor:

Ryn — 3 9uNR=r*Tun

where the energy-momentum tensor is Thn = 26 (/g L) / (1/g5gMY).

Minimizing .S,,, with respect to ¢ gives the scalar EOM, modified by a
term goe'0If (x) . HC arXiv: 2201.04053
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Backgrouncl Equations

The GW scalar develops a y-dependent VEV and ¢y (y) reacts back on the
metric like A; , A,. The scalar VEV and BG metric form a set of non-linear
coupled equations.

5’V 8)\
6/:414/(?6 ¢O Z ¢O y yz‘),

2

AA™ = A" = ===V (¢0) ——ZA (60)0(y — i)

/432%/2 2

AP = —2— = V(o).

The 3rd equation is not independent, its differentiation gives the first two.

The solutions to the coupled equations (with back reaction) can be
written 1n terms of a single super-potential:

)% 2 1 [OW(6)]7 K2

- - I — - 2

DeWolfe, Freedman et al PRD (2000) Behrndt, Cvetic PLB (2000)

Haiying Cai



Multi-brane SuPchotential

To obtain an exponential metric in the multi-brane model, the superpotential
1s derived as :

%1 —ug?, 0<y<r The discontinuity in first
W(g) = term is due to A; #£ A,
O —ug?, r<y<lL
HC PRD (2022)
1 0W —u
¢6 — 5% = ¢o(y) = ore ™Y  GW mechanism stabilizes

— L =1log(¢p/¢r) the UV-IR distance

Goldberger and Wise PRL (1999), PLB (2000)

The brane terms are fixed by matching with the discontinuity of A’ and ¢ :

Ay =W (ds) EW (ds) (¢ — ds) + 74 (6 — ¢1)” .

A = 2 (W), = 22 M)

Y=r ,42

where A+, has no ¢o dependence since there is no jump for ¢o(y) aty = £r.
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—2A

Etfective Lagra ngian

Fierz-Pau

—2A

Lopf = /dy{ — [64 [(95h)? — Oshyu, OshH™] —LFP}

li

—4A
+ Emzx + Lrad—kin — - £5m}
T~
g e 24 24 4A h
Loie = — 5 [[G—2F — 405 (¢ f(@)e*4)] @00~ D)
2
+ 36_2A [F’ — A/G — %¢6Q&] c%h]
-
Two orthogonal conditions (gauge fixing):
4 2 )
mza; =0 ::> - A'G - %¢690 =0 (1)

HC arXiv: 2201.04053

HC PRD (2022)
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\G

—2F —e A" —4A ) f(z) =0 (2

)




Etfective Lagrangian

HC arXiv:2201.04053

o—2A [ o—2A ,
Eeff — /dy{ 9 o2 { A [(a5h) — a5h,u,l/ 85h'uy] - LFP}
p—4A
=+ ﬁmzx =+ ['rad—kin 9 LE;(TL}
/. N [Lom =~ |[FP4+GRA% 2P GA|
rad—kin —
1 oA .6 , + %+ G5 — 2(G +AF) gy
2 r + [2((; —4AF)—p + 2g02]
2419 A6 — " 10| o g )| } L
—e~ e, [F’— G - gcbéw] flx O\ 2N\
- 8L Fp — 5y — yi
\- % 2 350,70~ g 00 y/)

N4

€' f(x) behaves like a Lagrange multiplier
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radion terms without 90,

The jump [€'] ‘y:{oyif,a,L} =0

HC PRD (2022)
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fiquation of Motions

In EFT, the variation principle can be applied to a specific perturbation field:
HC arXiv:2201.04053

0Lcyy |:> ¢6 G¢ o 8¢0
5G = % [AA(F — A'G) + 0 (Fe® — Ae'f(x))}._
~
((/5090 T 8gb 90) +2; ()‘ G+ 3 Do 90) o(y — i)
Leti s | = 3"~ G'A — 4AF| - 2GV
+522e0( G — 2F — e A" — 4A] (%)),

4
/ [

suss oy | (6 HAFNG) AN 15 (86 + 5¥e) oy /)

5@ 82
= — ( G i v _ (¢e — g€’ (X)) :
Scalar EOM |
\ /
3 —4A 1 / / HZQ / 7
£eff3—? dye *"€ 0, |F —AG—Equgp o' f(x)

Varying L.yr with respect to € f(x) gives back to First Orthogonal Equation.
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'.'Z‘_quivalence and Correlation

One exact correspondence can be established between the EFT formalism

and the linearized Einstein equations: HC arXiv- 220].04053

(oL 1 3 ] N
ef
5Gf =0 = 2 [€2ARW/77W + Rss| = {€2ATW/77W + T55}
0Leyf 24 QAT 1~
K OF =0 = 2—/€2 [26 R/u//n/u/ R55] — {6 T,uu/n,uu §T55)

With stabilization, one EOM + two orthogonal equations are independent.

Four radion fields: ', G, ¢, €0,,0, f(x)

W/O stabilization, only two orthogonal equations are independent.

For ¢, = 0, 5d diffeomorphism (keep Sk x invariant) can remove € f(x):

[ Sef(@) = —C (5 8)lyeoirry = o]
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A\ SPurious ngmctrg

In the presence of stabilization, it is viable to conduct the field redefinition
to remove ¢ f(z)in EOM: HC arXiv: 2201.04053

= ~ )
G = 2F~ . 5d diffeomorphism
F'— NG~ 65 = ¢ = ef(x)
k _J
- )
F = F—-Aédf(x)e A
\G‘ = G — (" —2A¢) f(X)e_2A)
_@3 — o — Phef(x)e AL bp =0

o€’ = 0, otherwise 4d Poincare symmetry is broken

For ¢, # 0, ¢ = 0 is forced after stabilization.

Haiying Cai
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A SPurious Symmetry
For ¢y # 0 and ¢/ = 0 (¢’(r) = 0), only (-symmetry is broken,
but 4d diffeomorphism (required by graviton) is conserved.

Thus ONE degree of freedom for radion 1s permitted.

For ¢, = 0, relaxing the BC tobe €' (r) #0 (€'|,=0,03 = 0):
0S5 =

3 [ da? (6—4140#15 " —2A4'€] + 5 [2e=54] 0, f (w)) 0" f(x)

~

F ~ 24 and A’ ~ constant, this is a nonzero surface term.

However no radion stabilization

If ¢, # 0 and €' # 0 (forbidden choice), the radion kinetic term
will depend on the bulk value of €(¥) due to breaking of Poincare
symmetry.

HC arXiv:2201.04053
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Radion EOM

The radion EOM (respecting 4d Poincare symmetry) corresponds to
the combination of ¢**R,,(n,,)"* + Rss in Einstein equation:

3(F" — A'G)) f(x) + 3 [Fe** — A€ (y)] 0,0" f(x)

L O

7

With@ =0, G = 2@ and satisfying the junction conditions:

Fralk=" (MW@ + 5 vlo)

that can be rewritten in terms of the jumps for A’ and ¢y, :
2 O\

A’ i —K )\z / T — :
ATl=Fh o) (6]l =5

> @F’Hi —[A:G () f(z) = %Z[qsa]\w(x,y)]

Consistent with the First Orthogonal Equation

(%)

Haiying Cai Csaki, Graesser and Kribs PRD (2001)
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Radion Mass

The stabilization of multibrane model is similar to the RS1. The wave function

is corrected by back-reaction, with | = k¢p /v/2 HC PRD (2022)

e2alvl (1412, (y)] O<y<r

e2halylt2r(bi=k2) [T 4 12f,(4)] r<y<L

Only the BC of ¥ needs to be imposed. At UV and IR the BC reduces to be

(flo+ Sue ) |y—10,Ly =0, while at y =, we require f/(r — ) = fi(r +¢).
These BC choices satisfy the Hermitian conditions.

Au? (2k /2
m2 — U ( 2 - u) e—2[(k2+u)L—|—(k1—k2)fr]

3k
B Cl2@—2[(2k2—|—u)L—|—2(k1—kg)fr*D

42 (2ky + 1) The C term is negligible
31 ko [(kZ — k) e - kQ} due to a large warped
(for 0 < r < L) suppression

C ~

Haiying Cai
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Conclusion

In the multiple branes extension, two non-fixed point branes at y = £r
are present. Because there is only one degree of freedom of radion, the
middle branes need to be rigid for a static solution.

The BC of €'() can not be used to create another degree of freedom,
due to symmetry breaking. After stabilization, ¢’(y) = 0 is forced.

In terms of effective Lagrangian, one can apply the variation principle to a
specific perturbation field. This approach is demonstrated to be equivalent

to the linearized Einstein equation.

After applying the Goldberger-Wise mechanism similar to RS|, we show
the radion mass is below the cut off scale of the IR brane.
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Back up Slides



Dhqeomorphism

For an infinitesimal coordinate shift, the metric transforms accordingly:

Sgun = —&E8 5’K9](\2)N — O™ 9&?3\7 — O™ g](\g)K

Since diffeomorphism retains the metric in its original structure (i.e.
keep Sewm invariant), the transformation 1s of the specific form:

(r,y) = () + 1" 0C(z,y)

E(z,y) = e (z,y)

The component fields will transform as following:

Shy, = _aﬂgy _ aygw SF = —Al(’e™24

def(z) = —C, 0G = — (¢" = 24'¢") e ™A

g represents the usual 4d diffeomorphism and the fifth coordinate
shift is subject to the constraint ¢'(z,y)|y={0,+r.3 = 0.
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Radion Kinetic term

The radion kinetic term gets three parts: 1) involving only F and G 2) with

one epsilon 3) involving only GW scalar:
HC arXiv:2201.04053

Sm
£rad—kin — l
1 —2A p 6 v i
- / dye {a . RQv[aﬂm (F c,:)

2y, { _A'G— %fbéw} 3”f(”3)”

A
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Cosmological solution

To discuss the cosmological expansion, the metric needs to include
the time evolution:

ds® = n(t,y)?dt* — a(t,y)?dx* — b(t,y)*dy?

a(t,y) = ag(t)e”*(1 4 da), n(t,y) = e (1 + on)

Averaging (55 = k°Ts; with respect to y =r brane, one derives:

(<C.LQ)2 n ao B e 24 IiZkle ( 3 ;
agp ao N 3 /fl — kg P b
e~ 24
+ K2PREOb
_ ) y

P and P are the matter density and pressure at the brane.

HC PRD (2022) (arXiv 2109.09681)
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