

Experiment for direct measurements of short-lived particle dipole moments at LHC

Giorgia Tonani, INFN-Milano and IFIC-Valencia Contributions from CERN, IJCLAB, UCAS, INFN-Ferrara and Bonn groups

ICHEP conference, Bologna, 6th- 13th of July 2022

Physics motivation

EDM:

- of an elementary particle violates T and P symmetries \rightarrow **CP violation** via CPT theorem, new CPV source for baryogenesis
- **flavour-diagonal** source of CPV \rightarrow new

- Electric dipole moment (EDM): $\vec{\delta} = d\mu_B \frac{\vec{P}}{2}$
- Magnetic dipole moment (**MDM**): $\vec{\mu} = g\mu_B \frac{P}{2}$

 with μ_B: particle magneton d, g: adimensional factors P [?]: spin polarization vector 	 physics beyond the Standard MDM: probes baryon substructure particle and antiparticle MDI 	Model $M \rightarrow CPT test$ $M \rightarrow CPT test$	+ + + + + + + + + + + + + + + + + + +
Experimental method	1. Crystals + target	Goniometer for target+crystal	<u>Sensitivity</u>
 Spin precession in bent crystals Large electric field between crystal planes, effective B ≈ 500 T [3,4] 	First crystal similar to those previously tested at LHC [8] Second crystal tested [9], channeling efficiency >10% for 180 GeV/c pions (compatible with MC simulation). Different length and	 20 μm, rotation angle ~ 20 μrad 2. Spectrometer option under investigation Magnet already available at IR3: 	$\Lambda_c^+ \text{ baryon}$ Statistical limitation [9], LHCb scenario 10 ⁻¹⁵ $\int_{10^{-16}}^{10^{-16}} \int_{10^{-16}}^{10^{-16}} \int_{10^$
The decay angular distribution is sensitive to the polarization	bending angles, Si and Ge material considered	MCBW, L = 1.7 m, B = 1.1 T Provides acceptance > 80%	$ \overset{0}{\overset{+\circ}{\operatorname{S}}}_{\overset{+\circ}{\operatorname{S}}} 10^{-2} \begin{bmatrix} -\mu \text{ Ge} \\ -\mu \text{ Ge} \\ -\mu \text{ Si} \end{bmatrix} \overset{^{*}}{\overset{+\circ}{\operatorname{S}}}_{\overset{+\circ}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}}_{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}{\operatorname{S}}} \overset{^{*}}{\overset{*}} \overset{^{*}}}{\overset{*}} \overset{^{*}}{\overset{*}} \overset{^{*}}{\overset{*}} \overset{^{*}}{\overset{*}} \overset{^{*}}}{\overset{*}} \overset{^{*}}{\overset{*}} \overset{^{*}}}{\overset{*}} \overset{^{*}}}{\overset{*}} \overset{^{*}}{\overset{*}} \overset{^{*}}{\overset{*}} \overset{^{*}}{\overset{*}} \overset{^{*}}}{\overset{*}} \overset{^{*}}{\overset{*}}} \overset{^{*}}{\overset{*}} \overset{^{*}}}{\overset{*}} \overset{^{*}}}{\overset{^{*}}} \overset{^{*}}}{\overset{*}} \overset{^{*}}}{\overset{^{*}}} \overset{^{*}}}{\overset{^{*}}} \overset$
[5,6]:Spin precession angle	W target of ≈ 2 cm thickness, taken into account number of particles at target exit and detector occupancy	Silicon pixel sensors employed for tracking , need to optimize the number of layers and position	$ \begin{array}{c} 10^{-3} & -\mu & Ge & S_{2} \\ 10^{-3} & 10^{12} & 10^{13} & 10^{14} & 10^{15} & 10^{16} \\ \hline PoT \\ \hline FoT \\ Expected vields with IR3 test. \end{array} $

Expected yields with IR3 test, 7 TeV proton beam, proton flux 10⁶ p/s, baryons production spectrum from PYTHIA after channeling through 7 cm length, 7 mrad bent Ge crystal:

sensitive to MDM:

 $\Phi \approx \frac{g-2}{2} \gamma \theta_{C},$

with θ_C the bending angle

• X component of the spin vector after the precession sensitive to EDM:

 $s_x \approx s_0 \frac{d}{a-2} (\cos \Phi - 1)$

p Target

<u>(LHC)</u>

- Q(1000) of $D^+ \rightarrow K^-\pi^+\pi^+$ events recordable in 2 days of datataking
- $\mathcal{O}(1000)$ of $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ $(\Xi_c^+ \rightarrow pK^-\pi^+)$ events recordable in less than 2 months of datataking

10⁷ p/s possible with improved extraction technique

Ongoing study

Full simulation with DD4HEP (detector

an experiment for heavy baryon EDM/MDM measurement

- **Channeling** of charm hadrons with significant yield
- **Reconstruction** with lacksquarespectrometer based on available magnet
- **Background** characterization \rightarrow several **LHC machine** studies needed

After the test, two possibilities: i) fixed-target experiment at LHCb ii) **dedicated** experiment at **LHC**

- Performed LHC machine layout simulation [7]
- Successful layout test done at SPS. Test in LHC (IR3) possibly during Run3 or Run4
- Channeling of 6.5 TeV at LHC already demonstrated [8]

Decays considered:

- D⁺, D_s⁺, Λ_c^+ decaying to three charged hadrons
- Charm hadron decays separable exploiting invariant mass resolution, need $\sigma_M < 50$ MeV, possible optimizing tracking station length D

geometry) + GEANT4 to optimize the setup

References

[1] PDG, J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501 [2] A. Dainese et al., CERN-PBC-REPORT-2018-008 [3] V.G. Baryshevsky, Pis'ma Zh. Tekh. Fiz. 5 (1979) 182 [4] A.S. Fomin et al., J. High Energ. Phys. **2017** (2017) 120 [5] F. J. Botella et al., Eur. Phys. J. C (2017) 77:181 [6] E. Bagli et al., Eur. Phys. J. C (2017) 77:828 [7] D. Mirarchi et al., Eur. Phys. J. C 80 (2020) 10:929 [8] W. Scandale et al., Phys. Lett. **B** 758 (2016) 129:133 [9] S. Aiola et al., Phys. Rev. D 103 (2021) 072003