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Snowmass paper on EDMs, 
why many EDMs:
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Snowmass papers on EDMs
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Neutron EDM

Electron EDM

Using existing technologies



Snowmass paper on pEDM
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Snowmass paper on pEDM
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Storage ring EDM

Graph by On Kim



Storage ring pEDM at 10-29e-cm, best hadronic EDM exp.

• High physics reach at hundreds of TeV New-Physics mass scale, enhanced 
sensitivity to 𝛳QCD by 3-orders of magnitude. Best sensitivity to Higgs CPV

• If found, it can help explain the matter-antimatter asymmetry of the universe.

• Direct search for low/very low frequency axion dark matter

• High intensity polarized proton and deuteron beams available. The natural beam 
lifetime is very long, opportunity for even larger statistical accuracy.
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Muon g-2 experiment

• Muon g-2 results announcement at 
Fermilab, April 2021 reached >3B people.

• Muon g-2 success. The collaboration 
developed several high-precision numerical 
integrators for beam/spin dynamics 
simulations probing systematic errors.

Bk and Bq.—Two fast transients induced by the dynam-
ics of charging the ESQ system and firing the SR kicker
magnet slightly influence the actual average field seen by
the beam compared to its NMR-measured value as
described above and in Ref. [61]. An eddy current induced
locally in the vacuum chamber structures by the kicker
system produces a transient magnetic field in the storage
volume. A Faraday magnetometer installed between the
kicker plates measured the rotation of polarized light in a
terbium-gallium-garnet crystal from the transient field to
determine the correction Bk.

The second transient arises from charging the ESQs,
where the Lorentz forces induce mechanical vibrations in
the plates that generate magnetic perturbations. The ampli-
tudes and sign of the perturbations vary over the two
sequences of eight distinct fills that occur in each 1.4 s
accelerator supercycle. Customized NMR probes measured
these transient fields at several positions within one ESQ
and at the center of each of the other ESQs to determine
the average field throughout the quadrupole volumes.
Weighting the temporal behavior of the transient fields
by the muon decay rate, and correcting for the azimuthal
fractions of the ring coverage, 8.5% and 43% respectively,
each transient provides final corrections Bk and Bq to aμ as
listed in Table II.

V. COMPUTING aμ AND CONCLUSIONS

Table I lists the individual measurements of ωa and ω̃0
p,

inclusive of all correction terms in Eq. (4), for the four run
groups, as well as their ratios, R0

μ (the latter multiplied by
1000). The measurements are largely uncorrelated because
the run-group uncertainties are dominated by the statistical
uncertainty on ωa. However, most systematic uncertainties
for both ωa and ω̃0

p measurements, and hence for the ratios
R0

μ, are fully correlated across run groups. The net computed
uncertainties (and corrections) are listed in Table II. The fit
of the four run-group results has a χ2=n:d:f: ¼ 6.8=3,
corresponding to Pðχ2Þ ¼ 7.8%; we consider the Pðχ2Þ to
be a plausible statistical outcome and not indicative of
incorrectly estimated uncertainties. The weighted-average
value isR0

μ ¼ 0.003 707 300 3ð16Þð6Þ, where the first error
is statistical and the second is systematic [82]. From Eq. (2),
we arrive at a determination of the muon anomaly

aμðFNALÞ ¼ 116 592 040ð54Þ × 10−11 ð0.46 ppmÞ;

where the statistical, systematic, and fundamental constant
uncertainties that are listed in Table II are combined in
quadrature. Our result differs from the SMvalue by 3.3σ and
agrees with the BNL E821 result. The combined exper-
imental (Exp) average [83] is

aμðExpÞ ¼ 116 592 061ð41Þ × 10−11 ð0.35 ppmÞ:

The difference, aμðExpÞ − aμðSMÞ ¼ ð251$ 59Þ × 10−11,
has a significance of 4.2σ. These results are displayed
in Fig. 4.
In summary, the findings here confirm the BNL exper-

imental result and the corresponding experimental average
increases the significance of the discrepancy between the
measured and SM predicted aμ to 4.2σ. This result will
further motivate the development of SM extensions,
including those having new couplings to leptons.
Following the Run-1 measurements, improvements to

the temperature in the experimental hall have led to greater

TABLE II. Values and uncertainties of the R0
μ correction terms

in Eq. (4), and uncertainties due to the constants in Eq. (2) for aμ.
Positive Ci increase aμ and positive Bi decrease aμ.

Quantity
Correction
terms (ppb)

Uncertainty
(ppb)

ωm
a (statistical) % % % 434

ωm
a (systematic) % % % 56

Ce 489 53
Cp 180 13
Cml −11 5
Cpa −158 75

fcalibhωpðx; y;ϕÞ ×Mðx; y;ϕÞi % % % 56
Bk −27 37
Bq −17 92

μ0pð34.7°Þ=μe % % % 10
mμ=me % % % 22
ge=2 % % % 0

Total systematic % % % 157
Total fundamental factors % % % 25
Totals 544 462

FIG. 4. From top to bottom: experimental values of aμ from
BNL E821, this measurement, and the combined average. The
inner tick marks indicate the statistical contribution to the total
uncertainties. The Muon g − 2 Theory Initiative recommended
value [13] for the standard model is also shown.

PHYSICAL REVIEW LETTERS 126, 141801 (2021)

141801-7
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Hadronic Electric Dipole Moments
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Input to hadronic EDM

• Theta-QCD (part of the SM)

• CP-violation sources beyond the SM

A number of alternative simple systems could provide invaluable 
complementary information (e.g. proton, neutron and 3He, deuteron,…).  

• At 10-29e�cm pEDM is at least an order of magnitude more 
sensitive than the current nEDM plans.
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EDMs of different systems (Marciano)
Theta_QCD:

Super-Symmetry (SUSY) model predictions:
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Storage ring Electric Dipole Moments

Frozen spin method: 

• Spin aligned with the momentum vector

• Radial E-field precesses EDM/spin vertically

• Monitoring the spin using a polarimeter
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Storage Ring EDM experiments, frozen spin method
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Pure electric bending, w/ “magic” momentum

p=!"
#
, 𝑎:magnetic

moment	anomaly

F.J.M. Farley et al., “A new 
method of measuring electric 
dipole moments in storage 
rings,” Phys. Rev. Lett. 93, 
052001 (2004)



Electric fields: Freezing the g-2 spin precession

• The g-2 spin precession is zero at “magic” momentum  
(3.1GeV/c for muons,…), so the focusing system can be electric

• The “magic” momentum concept with electric focusing was first 
used in the last muon g-2 experiment at CERN, at BNL & FNAL.
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Proton Statistical Error (232MeV): 10-29 e-cm

tp : 2´103s    Polarization Lifetime (Spin Coherence Time)
A : 0.6      Left/right asymmetry observed by the polarimeter
P : 0.8      Beam polarization
Nc : 4´1010p/cycle Total number of stored particles per cycle (103s)
TTot: 2´107s           Total running time per year
f : 1%                 Useful event rate fraction (efficiency for EDM)
ER : 4.5 MV/m       Radial electric field strength
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Phys. Rev. D 104, 096006 (2021)
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Systematic errors
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Storage Ring Electric Dipole Moments exp. options

Fields Example EDM signal term Comments

Dipole magnetic field (B)
(Parasitic)

Muon g-2 Tilt of the spin precession plane.  
(Limited statistical sensitivity 
due to spin precession)

Eventually limited by geometrical 
alignment.  
Requires consecutive CW and CCW 
injection to eliminate systematic errors

Combination of electric & 
and magnetic fields (E, B)
(Combined lattice)

Deuteron, 3He, 
proton, muon, 
etc.

Mainly: High statistical sensitivity. 
Requires consecutive CW and CCW 
injection with main fields flipping sign 
to eliminate systematic errors

Radial Electric field (E) & 
Electric focusing (E)
(All electric lattice)

Proton, etc. Large ring, CW & CCW storage.  
Requires demonstration of adequate 
sensitivity to radial B-field syst. error

Radial Electric field (E) & 
Magnetic focusing (B)
(Hybrid, symmetric lattice)

Proton, etc. Large ring, CW & CCW storage.  
Only lattice to achieve direct 
cancellation of main systematic error 
sources (its own “co-magnetometer”).
GOLD STANDARD!

d!s
dt
=
!
d × !v ×

!
B( )

  
d!s
dt

=
!
d ×
!
E

  
d!s
dt

=
!
d ×
!
E
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Background effects as a function of azimuthal harmonic N
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B-field
E-field



Ring planarity:
The average vertical speed in deflectors 
needs to be zero!

Quads: 0.1T/m, 0.4m

0.1 mm
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Hybrid, symmetric lattice storage ring. Great for systematic error reduction.

Sensitivity of radially polarized beam (sensitive to V. Dark Matter/Dark Energy,         
P. Graham et al., PRD, 055 010, 2021), most sensitive to vertical velocity problem

Z. Omarov et al.,



Vertical velocity effect cancels 
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Classification of systematic errors at 10-29 e-cm 
for hybrid-symmetric lattice

üAlternate magnetic focusing allows simultaneous CW & CCW storage and 
shields against external B-fields. Vertical dipole E-fields eliminated (its own 
“co-magnetometer”), unique feature of this lattice.

üSymmetric lattice significantly reduces systematic errors associated with 
vertical velocity (major source). Using longitudinal, radial and vertical 
polarization directions, sensitive to different physics/systematic errors.

üRequired ring planarity <0.1mm; CW & CCW beam separation <0.01mm, 
resolves issues with geometrical phases

21



Symmetries against systematic errors
• Clock-wise (CW) vs. Counter-Clock-Wise (CCW)

• Eliminates vertical Electric field background

• Hybrid lattice (electric bending, magnetic focusing)
• Shields against background magnetic fields

• Highly symmetric lattice (24 FODO systems)
• Eliminates vertical velocity background

• Positive and negative helicity
• Reduce polarimeter systematic errors 

• Flat ring to 0.1 mm, beams overlap within 0.01 mm
• Geometrical phases; High-order vertical E-field 22



Protons in a hybrid-symmetric ring: no new technology

• No need to develop/test new technology
• Simultaneous CW/CCW beam storage is possible
• Electric field ~4.5 MV/m with present technology
• Magnetic fields from misplaced quads are self-shielded by the magnetic focusing
• Hybrid/symmetric ring options are simple. Large tune in both planes, beam position monitor 

(BPM) tasks are achievable with present technology. 
• Estimated SCT are large, injection into ring works, while all primary systematic error 

sources are kept small.

• After protons, add dipole magnetic field in bending sections:
• Can do proton, deuteron, 3He, (and muons)
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System Risk factor, comments

Ring construction, beam 
storage, stability, IBS

Low. Strong (alternate) focusing, a ring prototype has been built (AGS 
analog at BNL) in 60’s. Lattice elements placement specs are ordinary. 
Intra-beam-scattering (IBS) OK below transition.

E-field strength Low. Plate-units are similar to those ran at Tevatron with higher specs.
E-field plates shape Medium. Make as flat as conveniently possible. Probe and shim out 

high order fields by intentionally splitting the CR-beams 

Spin coherence time Low. Ordinary sextupoles will provide >103s.

Beam position monitors 
(BPM), SQUID-based 
BPMs.

Medium. Ordinary BPMs and hydrostatic level system (HLS) to level 
the ring to better than 0.1mm; SQUID-based or more conventional 
BPMs to check CR-beams split to 0.01mm.

High-precision, efficient 
software

Low. Cross-checking our results routinely

Polarimeter Low. Mature technology available
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Timeline
• Snowmass/white paper, CDR, proposal/TDR, prototype/string-test, ring 

construction (3-5 years), storage (2-3 years) to first publication 
• Effort similar to muon g-2 experiments.
• Possible interesting results within a decade.
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Summary
üEDM physics is must do, exciting and timely, CP-violation, ~103 TeV New-Physics 

reach, axion physics, DM/DE. 

üHybrid, symmetric ring lattice works well. Minimized systematic error sources. 
Statistics and systematics to better than 10-29e-cm.

üE-field strength needed is less than TEVATRON (FNAL) ES-separators, operated 
reliably for >decade… At 4.4 MV/m, minimum risk. Working EDM lattice with long 
SCT and large enough acceptance provides the statistics. Ring planarity <0.1mm, 
CW & CCW beam separation <0.01mm.

üSnowmass: A strong endorsement à … interesting results within a decade.   
Total effort similar to muon g-2 exp. 26
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Hybrid, symmetric lattice storage ring, 
designed by Val. Lebedev (FNAL)

Sensitivity goal
10-29e-cm
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Ring planarity critical to control geometrical phase errors

• Numerous studies on slow ground motion in accelerators, 
Hydrostatic Level System for slow ground motion studies at Fermilab. 
(Part of the linear collider studies!)

• Thorough review by Vladimir Shiltsev (FNAL):
https://arxiv.org/pdf/0905.4194.pdf
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HLS measurements at Fermilab
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Fig.35. HLS probe on Tevatron accelerator focusing magnet. 

 

Fig.36. One week record of elevation difference of two neighbor focusing magnets in 

the Teveatron tunnel as measured by HLS (starts midnight Feb.7,2004; Ref.[29]). 

 
Fig.35. HLS probe on Tevatron accelerator focusing magnet. 

 

Fig.36. One week record of elevation difference of two neighbor focusing magnets in 

the Teveatron tunnel as measured by HLS (starts midnight Feb.7,2004; Ref.[29]). 
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Tevatron Sensors on Quad

James T Volk May 2009

In the circle is a water level 
pot on a Tevatron 
quadrupole  

Air Line

Water line
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Large Surface Area Electrodes

Parameter Tevatron pbar-p 
Separators

BNL K-pi 
Separators

pEDM
(low risk)

Length/unit 2.6m 4.5m 5×2.5m

Gap, 
E-field

5cm,
7.2 MV/m

10cm,
4 MV/m

4cm,
4.5 MV/m

Height 0.2m 0.4m 0.2m

Number 24 2 48

Max. HV ±(150-180)KV ±200KV ±90KV



E-field plate modules: The (24) FNAL Tevatron 
ES-separators ran for years with harder specs

0.4 m

3 m

Beam position
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The proton EDM in the AGS tunnel at BNL

Circumference: 800m
Max E-field: 4.5MV/m
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John Benante, Bill Morse in AGS tunnel, 
plenty of room for the EDM ring.
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Sketch of the AGS Accumulator Ring
• It was sketched for 1.5GeV ring. Space needed: 1mX1m. 
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Booster

Booster-to-AGS BtA Proposed EDM Ring

Beam Injection points

AGS

Q12 of BtA

2nd Inj. Line

1st Inj. Line
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These intensity scan was done in 2009 
with Booster input 3*1011. Not much 
horizontal scan was done since then. 
The vertical scale is normalized 95% 
emittance.

The corresponding normalized rms
emittance at 1011 is 0.7π horizontal, 1.0π 
vertical for horizontal scraping.
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emittance mw006  vert scrape
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Emittance out of Booster
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3He Co-magnetometer in nEDM experiment

Data:	ILL	nEDM	experiment	with	199Hg	co-magnetometer

EDM	of	199Hg	<	10-28	e-cm	(measured);	atomic	EDM	~	Z2→	3He	EDM	<<	10-30 e-cm

If	nEDM	=	10-26 e×cm,

10	kV/cm	® 0.1	µHz	shift

@ B	field	of	2	´ 10	-15 T.

Co-magnetometer	:

Uniformly	samples	the	B	Field	
faster	than	the	relaxation	time.

Under	gravity,	the	center	of	mass	of	He-3	is	higher	than	UCN	by	Dh	» 0.13	cm,	
sets	DB	=	30	pGauss	(1	nA	of	leakage	current).		DB/B=10-3.
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Sensitivity to Rule on Several New Models
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and axion physics 

Statistics limited
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Electric quad-field from a displaced sextupole 
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ARIADNE and nucleon EDMs
• Combine with ARIADNE and nucleon 

EDM provides decisive information

• Scenario:

• ARIADNE: Null axion

• pEDM measure: 𝑑! ∼ 10"#$e ⋅ cm

• Exclude QCD axion independent of axion 
DM: 

0.2 meV ≲ 𝑚% ≲ 3meV

Y. K. Semertzidis and S. Youn. , 2104.14831

ARIADNEIntroduction SummaryKey factors Projected sensitivity



Spin Coherence Time
• Not all particles have same deviation from magic 

momentum, or same horizontal and vertical divergence 
(second order effects)

• They Cause a spread in the g-2 frequencies:

• Correct by tuning plate shape/straight section 
length plus fine tuning with sextupoles (current 
plan) or cooling (mixing) during storage (under 
evaluation).� 

dω a = aϑx
2 + bϑy

2 + c
dP
P

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

45



Hybrid, symmetric lattice storage ring. Spin Coherence Time with sextupoles

Hybrid (magnetic and elecric) sextupoles were used to achieve long SCT.

Z. Omarov et al., PHYS. REV. D 105, 032001 (2022)


