Channeling at accelerators highenergy frontier and future developments from GALORE

Speaker: M. Romagnoni

INFŃ

Channelling phenomenon

- a continuous potential with wells and barriers articles within a critic angle • Particles aligned with atomic planes perceive
- Particles within a critic angle $\sqrt{(2U_0)/(pv)}$ can be bound to potential:

Between adjacent planes if positively charged Into plane if negatively charged

• Scattering is strongly different in two cases: Reduction of inelastic collision with nuclei Increased inelastic collision with nuclei

Channeling in bent crystals

• Channeled particle follows the curvature of the lattice plane

3

- A bent crystal can act as a sort of waveguide for channeled particle, steering them at angle depending on its geometry
- Large steering power can be obtained in few millimeters of crystal, equivalent to that of hundreds of Tesla magnetic dipole

Energy (GeV)	Deflection	Size (mm)	Equivalent dipole
6500	50	4	276 T
0.855	1500	0.015	285 T
20.53	400	0.06	456 T
2000	14000	70	1134 T

To visualize the difference...

Large Hadron Collider (Fr/Sw):

- circumference 27km
- Dipole max field 8.3 T

Advanced Photon Source (USA):

- circumference 1.1 km
- With magnets strong as crystals

Application in accelerators

Deflection

- Collimation
- Extraction
- Focusing / **De-focusing**

Spin precession

• Study of fast decaying particle **EMD** and **MDM**

Crystal Assisted Collimation

- Unavoidably particles diverge from desired trajectory and form a halo around beam
- Traditional approach stops the halo with a series of amorphous absorber
- Cons: development of showers in collimators

- Channeled particles in bent crystal while being steered avoid strong scattering: shower development strongly suppressed
- High efficiency in removing halo from beam in controlled manner

Crystal requirement for LHC

Lattice quality:

- Dislocation density <1/cm^2
- Roughness <100nm
- Miscut angle <10µrad

Curvature:

- Thickness across the beam 4mm
- Deflection 50±2.5µrad
- Torsion <1µrad/mm
- Stability after bake-out (@250°C)

Miscut measure & reduction

- Miscut measure using X-rays High-Resolution Diffractometer (HRXRD) coupled with laser autocollimator
 - Crystal is aligned to Bragg diffraction & surface angular position is recorded with autocollimator
 - Crystal is rotated 180° over axis nominally perpendicular to surface (misalignment and mechanical imprecisions are measured with autocollimator)
 - Crystal is aligned again to Bragg diffraction: offset between the two measure indicate miscut angle with 1.7µrad resolution
- Miscut reduction:
 - Silicon wafers features generally miscut 200-10000 µrad
 - Magnetorheological Finishing (MRF) remove material with high precision without damaging lattice
 - Planarity: $1\lambda \rightarrow 1/10\lambda$
 - Miscut 200 μ rad \rightarrow 2 μ rad

Crystal Shaping & Lattice Quality

- Crystal shaping:
 - Dicing saw cuts from wafer specimen 2x4.2x55mm³
 - Lapping and polish on surface to remove 0.1mm from each side of crystal to discard damaged material
- Lattice Surface Quality verification:
 - (a) X-rays diffraction (depth up to $\approx 15 \mu m$)
 - (b) Micro-Raman spectroscopy (depth $\approx 1.5 \mu m$)
 - (c-d) Rutherford Backscattering (depth ≈1.5µm, nanometric resolution)
 - (c'-d') HR-TEM (direct observation of lattice planes on surface)

¹⁰ Bending & Characterizations ,

- Crystal bending:
 - All holder components made in Ti gr V
 - Red faces cut at precise angle to impose primary bending along «a»
 - In center of crystal, anticlastic curvature along «b» is exploited to deflect the beam
- Bending Characterization:
 - Crystal+Holder installed on HRXRD
 - Bragg diffraction measured in different position along curvature
 - Angular shift between reflection directly linked to curvature
- Thermal stability verified after annealing in vacuum oven (T=250C, P=1nbar)

Channeling limit

- Scattering with nuclei **quickly remove** particles from channeling
- Rate of nuclear dechanneling is strongly dependent on **impact parameter** on the interplanar channel
- The fraction of the beam impacting close to atomic planes is **not deflected**: hard-limit for channeling efficiency set at ≈80%

GALORE challenge: lens-assisted crystal

- At the very beginning of channeling, most particles trajectories point towards the center of the interplanar channel
- **Before** nuclear dechanneling can occur, the crystal is **interrupted**
- The particles continue to travel in straight line, being «focused» at the center of the channel
- Once the crystal interruption ends, particles re-enter the crystal far from nuclei in zone of stable channeling

GALORE challenge: lens-assisted crystal

The phenomena is **fully understood theoretically**

13

https://doi.org/10.1088/1748-0221/2/08/P08006

BUT

Still **no prototype** has been produced and no experimental test has been performed

New techniques from semiconductors industry

Deep Reactive Ion Etching (DRIE)

• High spatial precision

14

- Vertical walls with high aspect ratio
- No damage / stress on crystal

Silicon Nitride (Si₃N₄) film

- High adhesion to silicon
- Nanometric precision of film thickness
- Highly patternable with submicrometric precision

Future

- LHC test of crystal assisted collimation for ion beam
- Fabrication of first prototype of crystal with cut
- First observation of channeling enhancement w 180 GeV π^+ @ NA CERN as proof of concept: **new** possibility for crystal usage

Thank you for your attention!