

Measurement of nonprompt and prompt D⁰ azimuthal anisotropy in Pb-Pb collisions at 5.02 TeV

Milan Stojanovic

Purdue University on behalf of the CMS collaboration

International Conference on High Energy Physics 2022 Bologna, Italy

Light hadron anisotropy

□ Particle distribution over azimuthal angle:

- \Box V_n coefficients driven by
 - Initial geometry
 - Medium evolution
 - Flow mechanism (light hadrons):
 - □ low $p_{\rm T}$ → hydrodynamics
 - $\Box \quad medium \ p_T \rightarrow coalescence$
 - □ high $p_{\rm T}$ → path-dependent parton energy loss

Phys. Lett. B 776 (2017) 195

Heavy quark anisotropy

PbPb @ 5 TeV

Prompt D⁰

carrying heavy luggage Traveling light

Flow mechanism (heavy quarks):

- \Box low $p_{\rm T} \rightarrow$ hydrodynamics + collisional energy loss
- medium all $p_T \rightarrow$ coalescence
- \Box high $p_{\rm T} \rightarrow$ path-dependent parton energy loss
 - > Significant anisotropy of c quark is measured in Milan Stojanovic, ICHEP 2022 **PbPb** events

Phys. Lett. B 816 (2021) 136253

b quark anisotropy

DUE

UNIVERSITY®

b quark anisotropy

$\hfill\square$ Advantages of $b\to D^0$ channel

UNIVERSITY

- \checkmark Larger branching ratio wrt b \rightarrow J/ ψ
- ✓ Higher D⁰ mass than leptons: higher correlation between D⁰ and b direction

Potential for precise measurement in wide kinematic range!

Milan Stojanovic, ICHEP 2022

Analysis technique

Inclusive D⁰ signal extraction

Reconstruction

Data from 2018 Run:

- PbPb @ 5 TeV ~ 4B Minimum Bias events
- \Box Inclusive D^0 reconstruction
 - $\bigstar D^0 \to K^- \pi^+$
- □ No particle identification → All possible combinations of pairs with opposite charge track
- □ Additional selection performed with Boosted Decision Tree

Inclusive D⁰ signal extraction

CMS

Reconstruction

- Data from 2018 Run:
 - PbPb @ 5 TeV ~ 4B Minimum Bias events
- \Box Inclusive D^0 reconstruction

 $\bigstar D^0 \to K^- \pi^+$

- ❑ No particle identification → All possible combinations of pairs with opposite charge track
- □ Additional selection performed with Boosted Decision Tree

Inclusive D⁰ Yield

- □ Signal mass spectrum double gaussian
- □ Swap component gaussian
- $\Box K^+K^- \& \pi^+\pi^-$ Crystal ball functions
- □ Combinatorial polynomial 3rd order

Two component template fit to extract $b
ightarrow \mathrm{D}^0$ fraction

DCA (distance of closest approach)

Two component template fit to extract $b o \mathrm{D}^0$ fraction

DCA (distance of closest approach)

PURDUE UNIVERSITY

Two component template fit to extract $b
ightarrow {
m D}^0$ fraction

DCA (distance of closest approach)

Scalar product method

 $Q_n - D^0$ candidate flow vector

 Q_{nA}, Q_{nB}, Q_{nC} – event plane vectors from subevents

$$v_n \{ \text{SP} \} \equiv \frac{\langle Q_n Q_{nA}^* \rangle}{\sqrt{\frac{\langle Q_{nA} Q_{nB}^* \rangle \langle Q_{nA} Q_{nC}^* \rangle}{\langle Q_{nB} Q_{nC}^* \rangle}}}$$

Scalar product method

Scalar product method

Results

$b \rightarrow D^0$ anisotropy results

□ Mass ordering of flow magnitudes

DUE

UNIVERSITY

Weak p_T and centrality dependence
 Nonzero *both* v₂ & v₃

$b \rightarrow D^0$ anisotropy results

Qualitatively good agreement between theory and data

RDIJE

UNIVERSITY

PHSD magnitude of v₃ similar as in data
 Maximum position shifted towards higher p_T

PHSD: PRC 92 (2015) 014910 TAMU PLB 735 (2014) 445 LGR EPJ C 80 7 (2020) 671 CUJET3 CPC 43 4 (2019) 044101

LBT PRC 94 (2016) 014909

Summary

 \Box First measurement of $b \rightarrow D^0$ azimuthal anisotropy in PbPb collisions

□ Non-zero *both* elliptic and triangular flow

 $\hfill\square$ Covered both high $p_{\rm T}$ and low $p_{\rm T}$ range

□ Mass ordering of flow observed

Qualitative agreement with expectations with additional constraint on models

Backup

Heavy flavor v₂ from CMS

CMS *Preliminary* PbPb 1.6 nb⁻¹ (5.02 TeV) **Charged hadrons Charged hadrons Prompt J/**ψ, Cent. 10-60% 0.25 Inl < 1, Cent. 10-30% ○ 1.6 < lyl < 2.4 Phys. Lett. B 776 (2017) 195 • lyl < 2.4 Y(1S) Iyl < 2.4, Cent. 10-30%</p> Nonprompt J/ψ , Cent. 10-60% 0.2 **Prompt D**⁰ () 1.6 < |y| < 2.4 ♦ lyl < 2.4 Phys. Lett. B 816 (2021) 136253 **Prompt D⁰** 0.15 ■ lyl < 1, Cent. 10-30% Nonprompt D⁰ Nonprompt **D**⁰, PAS-HIN-21-003 ★ lyl < 1, Cent. 10-30% 0. CMS-PAS-HIN-21-003 Prompt J/ψ 0.05 CMS-PAS-HIN-21-008 0 Nonprompt J/ψ CMS-PAS-HIN-21-008 -0.05 10 Y(1S) p_{_} (GeV/c) CMS-PAS-HIN-21-008

D⁰ meson selection

Variables used for BDT training

\Box D⁰ variables:

- $\odot~\chi^2$ probability for the D^0 vertex fit
- $\,\circ\,$ The distance between the secondary and primary vertices and its significance
- The angle between the momentum of the D0 meson candidate and the line connecting the primary and the secondary vertices (pointing angle)

D0 daughters variables:

- $\,\circ\,$ The significance of the distances of closest approach to the primary vertex
 - both along and perpendicular to the beam direction