

NEWS-G searches for light dark matter Results with a hydrogen-rich target

Konstantinos Nikolopoulos University of Birmingham

on behalf of the NEWS-G Collaboration

XLI International Conference on High Energy Physics (ICHEP) July 9th, 2022, Bologna, Italry

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement 714893-ExclusiveHiggs and under Marie Skłodowska-Curie agreement 841261-DarkSphere, 895168-neutronSPHERE

Spherical Proportional Counter

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

Spherical Proportional Counter

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

Spherical Proportional Counter

Electric field scales as 1/r², volume divided in: "drift" and "amplification" regions Capacitance independent of size: low electronic noise

Search for Kaluza-Klein axions

Search for solar Kaluza-Klein axions
Gravitationally bound to the solar system
Potential explanation of the corona heating problem
Decays to two photons
Two coincident point-like events with similar energy
Data collected at LSM Astropart.Phys. 97 (2018) 54-62
Exposure: 4.3 day · m³
Ne:CH₄(0.7%) at 3.1 bar

Search for Kaluza-Klein axions

- Search for solar Kaluza-Klein axions
- Gravitationally bound to the solar system
- Potential explanation of the corona heating problem
- Decays to two photons
 - Two coincident point-like events with similar energy
- Data collected at LSM Astropart. Phys. 97 (2018) 54-62
 - **Exposure:** 4.3 day \cdot m³
 - ▶ Ne:CH₄(0.7%) at 3.1 bar

Phys.Rev.D 105 (2022) 1, 012002

4

K. Nikolopoulos / 9 May 2022 / Light Dark Matter Searches with Spherical Proportional Counters 🐻 UNIVERSITY OF BIRMINGHAM

Search for Kaluza-Klein axions

New Experiments With Spheres - Gas

https://news-g.org/

- NEWS-G Collaboration
 - ▶ 5 countries
 - 10 institutes
 - ~40 collaborators
- Direct light DM search
- Light gaseous tagets (H, He, Ne)
- Low energy threshold
- Favourable quenching factor
- Three underground laboratories
- SNOLAB
- Laboratoire Souterrain de Modane
- Boulby Underground Laboratory

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐻 UNIVERSITY OF BIRMINGHAM

Direct Detection: Light Dark Matter

For lighter elements more of the recoil energy turns into detectable signal

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY OF BIRMINGHAM

Quenching factor measurements: TUNL

PRD 105 (2022) 5, 052004

7

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY OF BIRMINGHAM

Quenching factor measurements: TUNL

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐻 UNIVER

Quenching factor measurements: COMIMAC

- Electrons and ions of known kinetic energy
- Compare detector response
- Ion energy 2 13 keV
- Electron energy 1.5 13 keV

8

arXiv:2201.09566

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY OF BIRMINGHAM

Quenching factor measurements: COMIMAC

8

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY OF BIRMINGHAM

Quenching factor measurements: COMIMAC

Landscape of Direct Detection searches

Also constraints on spin-dependent proton/neutron-DM interactions
K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target

UNIVERSITY^{OF} BIRMINGHAM

Landscape of Direct Detection searches

Also constraints on spin-dependent proton/neutron-DM interactions
K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target

SNOGLOBE: ø140 cm detector

Ø140 cm 4N Copper (99.99% pure) Ultra-pure electroplated inner layer

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐻 UNIVERSITY of 10

Single anode: Drift and Amplification fields connected

$$E = \frac{V_a}{r^2} \frac{r_a r_c}{r_c - r_a} \approx \frac{V_a r_a}{r^2}$$

Simulation:JINST 15 (2020) 06, C06013 K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐻 UNIVERSITY of 11

Single anode: Drift and Amplification fields connected

$$E = \frac{V_a}{r^2} \frac{r_a r_c}{r_c - r_a} \approx \frac{V_a r_a}{r^2}$$

ACHINOS: Multi-anode sensor JINST 12 (2017) 12, P12031

- Multiple anodes placed at equal radii
- Decoupling drift and amplification fields
- Opportunity: individual anode read-out

JINST 15 (2020) 11, 11

UNIVERSITY^{OF} BIRMINGHAM K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target

SNOGLOBE at LSM

- 2019: detector assembly in France
 - Hemispheres e-beam welded
 - ▶ 500 µm electroformed inner layer
- April 2019: initial commissioning at LSM
 - UV laser and ³⁷Ar calibration
 - Multi-anode sensor
- July 2019: Pb and H₂O shield installed
 - ~10 days of physics data
 - ▶ 135 mbar of CH₄ (~100g)

<image>

12

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY OF BIRMINGHAM

Electron Counting

- Pulse treatment (deconvolution)
 Resolve individual electrons
 Diffusion O(100µs)
 - Obtain time separation of peaks
 - Surface vs volume discrimination
- Signal and background model
 - Derived from simulations
 - Validated with calibration data

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY of 13

Results with LSM data

Data divided into 2/3/4 peak
 Maximum likelihood fit to time separation
 Only test data analysed so far: ~30% data
 Remaining data is blinded

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY of 14

LSM Physics Result

WIMP exclusion limit (S140@LSM, 135mbar CH4)

90% upper limits set with profile likelihood ratio
 Exposure 0.12 kg·days

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐻 UNIVERSITY of 15

Installation at SNOLAB

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐻 UNIVERSITY of 16

Installation at SNOLAB

Installation at SNOLAB

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY of BIRMINGHAM 16

Electroformed Cuprum Manufacturing Experiment

EuME

A Ø140 cm sphere electroformed underground in SNOLAB

- Builds on achievements of NEWS-G electroplating
 - ▶ 36 µm/day \rightarrow ~1 mm/month
- No machining or welding grow sphere directly

Electroformed Cuprum Manufacturing Experiment

EuME

- A Ø140 cm sphere electroformed underground in SNOLAB
- Builds on achievements of NEWS-G electroplating
 - ≥ 36 µm/day \rightarrow ~1 mm/month

No machining or welding - grow sphere directly

Current Status

- ø30 cm scale prototype to be produced at PNNL
 - Bath designed and assembled
 - Initial electroformation tests undertaken
- ø140 cm detector to follow shortly after
 - Use existing shielding for physics exploitation

PNNL Shallow Underground Laboratory

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐻

DarkSPHERE

- Ø300cm intact underground electroformed spherical proportional counter
- Low background water-based shield
- 2.5 m thickness sufficient for <0.01 dru</p>
- Dominant background photos in the cavern
- R&D on-going for ACHINOS

¥

Science and Technology Facilities Co

Kingdom
Nuclear Recoils

19

Nuclear Recoils

19

K. Nikolopoulos / 9 May 2022 / Light Dark Matter Searches with Spherical Proportional Counters

19

K. Nikolopoulos / 9 May 2022 / Light Dark Matter Searches with Spherical Proportional Counters 🐰 UNIVERSITY of BIRMINGHAM 19

Summary

NEWS-G: rich physics and R&D programme, exploring new territory with Spherical Proportional Counters

- Significant advances on instrumentation and techniques
 - Electroformation, ACHINOS, ...
 - Quenching factor measurements
 - **Electron counting**
- New world-leading constraints
- Data taking in SNOLAB to start imminently
- Several detectors scheduled/planned for the coming years

Many physics opportunities to look forward to!

____10⁻³² ເງັ_____10⁻³³

. ന10⁻³⁴

leon

DM-nucl

10⁻³⁵

10⁻³⁶

10⁻³⁷

10⁻³⁸

10⁻³⁹

10⁻⁴⁰

10⁻⁴¹

10⁻⁴²

10

10

10

-45 10

10

DarkSide-50

CRESST-III

CDMSLite

0.3dr

RELIMINARY

Ø 3.00 m

300 days E(0.014, 1) keV

0% CL Upper Limit

5.0 bar He:10% C₄H₁₀

10⁻¹

Xenon 1T - Migda

/S-G: SNOGLOBE

NEWS-G: DarkSPHERE

IEWS-G: ECUME

 $\rightarrow \rightarrow \rightarrow$ He γ Floor

Additional Slides

Ionisation quenching factor

²³⁸U and ²³²Th decay chains

Copper common material for rare event experiments

- Strong enough to build gas vessels
- No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
- Low cost/commercially available at high purity

Backgrounds

- Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
- Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

Copper common material for rare event experiments

- Strong enough to build gas vessels
- No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
- Low cost/commercially available at high purity

Backgrounds

- ▷ Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
- Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

Copper common material for rare event experiments

- Strong enough to build gas vessels
- No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
- Low cost/commercially available at high purity

Backgrounds

- ▷ Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
- Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

Copper common material for rare event experiments

- Strong enough to build gas vessels
- No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
- Low cost/commercially available at high purity

Backgrounds

- Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
- Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

Copper common material for rare event experiments

- Strong enough to build gas vessels
- No long-lived isotopes (⁶⁷Cu t_{1/2}=62h)
- Low cost/commercially available at high purity

Backgrounds

- Cosmogenic: ⁶³Cu(n,α)⁶⁰Co from fast neutrons
- Contaminants: ²³⁸U/²³²Th decay chains

4N Aurubis AG Oxygen Free Copper (99.99% pure)

- Spun into two hemispheres
- Electron-beam welded together

²¹⁰Pb contamination

Estimation of out-of-equilibrium ²¹⁰Pb contamination through low background α-particle counting

XIA UltraLo-1800 https://www.xia.com/ultralo-theory.html

25

²¹⁰Pb contamination

Estimation of out-of-equilibrium ²¹⁰Pb contamination through low background α-particle counting

25

²¹⁰Pb contamination

Estimation of out-of-equilibrium ²¹⁰Pb contamination through low background α-particle counting

SNOLAB detector: 4N Aurubis AG Oxygen Free Cu (99.99% pure)
▶ Out-of-equilibrium ²¹⁰Pb contamination: 29±10 (stat)+9-3 mBq/kg

SNOLAB detector: 4N Aurubis AG Oxygen Free Cu (99.99% pure) ▶ Out-of-equilibrium ²¹⁰Pb contamination: 29±10 (stat)+9-3 mBq/kg

Background

Bremsstrahlung X-rays from ²¹⁰Pb and ²¹⁰Bi β-decays in Cu

SNOLAB detector: 4N Aurubis AG Oxygen Free Cu (99.99% pure)

▶ Out-of-equilibrium ²¹⁰Pb contamination: 29±10 (stat)⁺⁹-3 mBq/kg

Background

Bremsstrahlung X-rays from ²¹⁰Pb and ²¹⁰Bi β-decays in Cu

Internal shield

Ultra-pure Cu layer on detector inner surface

Suppresses ²¹⁰Pb and ²¹⁰Bi backgrounds by factor 2.6 under 1 keV

To Pump and Filter

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐰 UNIVERSITY^{of} BIRMINGHAM

27

ACHINOS performance with DLC coating

- Good energy resolution
- High pressure operation
- High gain
- Stability
- 2 channel read-out

Measurement of the 5.9 keV ⁵⁵Fe X-ray line

28

Towards individual anode readout

Reading out individual ACHINOS anodes: position of interaction can be reconstructed First tests: Separate the anodes in two electrodes "Near" and "Far" (from the rod)

Event reconstruction

<u>In the future:</u> Individual anode read-out → track reconstruction

NEWS-G: Prototype at LSM

- Various quenching factor definitions in the literature
 - fraction of ion kinetic energy dissipated as ionisation electrons and excitation of atomic and quasi-molecular states
 - > ratio of the "visible" energy in an ionisation detector to the recoil kinetic energy
 - conversion factor between kinetic energy of an electron and ion that result to the same "visible" energy in the ionisation detector

- Various quenching factor definitions in the literature
 - fraction of ion kinetic energy dissipated as ionisation electrons and excitation of atomic and quasi-molecular states
 - > ratio of the "visible" energy in an ionisation detector to the recoil kinetic energy
 - conversion factor between kinetic energy of an electron and ion that result to the same "visible" energy in the ionisation detector
- Quenching factor intimately connected to W-value
 - ▶ W-value is the average energy required to liberate an e-ion pair
 - Typically, detector response calibrated with electrons of known energy

$$q_f(E) = \frac{E_{ee}}{E} = \frac{N_i^i \cdot W_e(E)}{E} = \frac{W_e(E)}{W_i(E)}$$

- Various quenching factor definitions in the literature
- fraction of ion kinetic energy dissipated as ionisation electrons and excitation of atomic and quasi-molecular states
- ▶ ratio of the "visible" energy in an ionisation detector to the recoil kinetic energy
- conversion factor between kinetic energy of an electron and ion that result to the same "visible" energy in the ionisation detector
- Quenching factor intimately connected to W-value
- ▶ W-value is the average energy required to liberate an e-ion pair
- Typically, detector response calibrated with electrons of known energy

K. Nikolopoulos / 9 May 2022 / Light Dark Matter Searches with Spherical Proportional Counters 🐰 UNIVERSITY OF BIRMINGHAM

Astropart.Phys. 141 (2022) 102707

K. Nikolopoulos / 9 May 2022 / Light Dark Matter Searches with Spherical Proportional Counters 🐰 UNIVERSITY OF BIRMINGHAM

Coherent Elastic v-Nucleus Scattering

CEvNS opens a window to investigation non-standard neutrino interactions

- ▶ First observations by COHERENT in NaI (2017) and Ar (2020)
- Unique complementarity with DM searches as sensitivity reaches the neutrino floor
- NEWS-G3: A low-threshold low-background sea-level facility
- Environmental and cosmogenic background studies towards reactor CEvNS studies
- ▶ Shielding: Layers of pure copper, polyethylene, and lead, with active muon veto
- Assembly has started

Detector Calibration

A powerful UV laser capable of extracting 100s of electrons

213 nm laser used to extract primary electrons from detector wall
 Photo-detector in parallel tags events and monitors laser power

Laser intensity can be tuned to extract 1 to 100 photo-electrons

Modelling Single Electron Response

Phys. Rev. D 99, 102003 (2019)

N photo-electrons are extracted from the surface of the sphere: Poisson

- Each photo-electron creates S avalanche electrons
- Sum the contributions of all N photo-electrons: Nth convolution of Polya
- The overall response is convolved with a Gaussian to model baseline noise

Detector Monitoring

ong runs, response fluctuations induced by:

- temperature/pressure changes
- O₂ contamination
- sensor damage
- ⁷Ar calibrations
- crucial information
- can only be used at the end of a run
- .aser system
- detector response monitoring in physics runs

Electron counting characterisation

Low-intensity, 213nm UV-laser extracts electrons from copper surface Characterise avalanche gain and peak-counting

- Electron detection efficiency: 60%
- Separation of electron peaks above 8 μs
- ³⁷Ar injected at the end of physics campaign
- (almost) mono-energetic lines at 200 eV, 270 eV, and 2.8 keV
- detector response monitoring in physics runs

Gas Purification

- Gas purification required to avoid contaminants: O₂, H₂O, electronegative gases
 - Maintain high electron collection efficiency for large volumes
- Challenge: Radon emanation from purifiers
- Custom-made filter prepared in collaboration will Univ. Liverpool
 - Small number of controlled components
 - Assay emanation of individual components
 - Tests at Univ. Birmingham and Univ. Zaragoza → interesting beyond NEWS-G

Gas Purification

- ²²²Rn emanation tested with Single-Fill mode Controlled injection through purifier at 3mbar/s
- No filter: 0.014Hz
- Entegris: 1.2 Hz
- UOB-F1: 0.06 Hz

No change in gas composition observed

K. Altenmüller et al. N-33-03 IEEE NSS 2021

K. Nikolopoulos / 9 July 2022 / NEWS-G searches for light DM: Results with a hydrogen-rich target 🐻

40