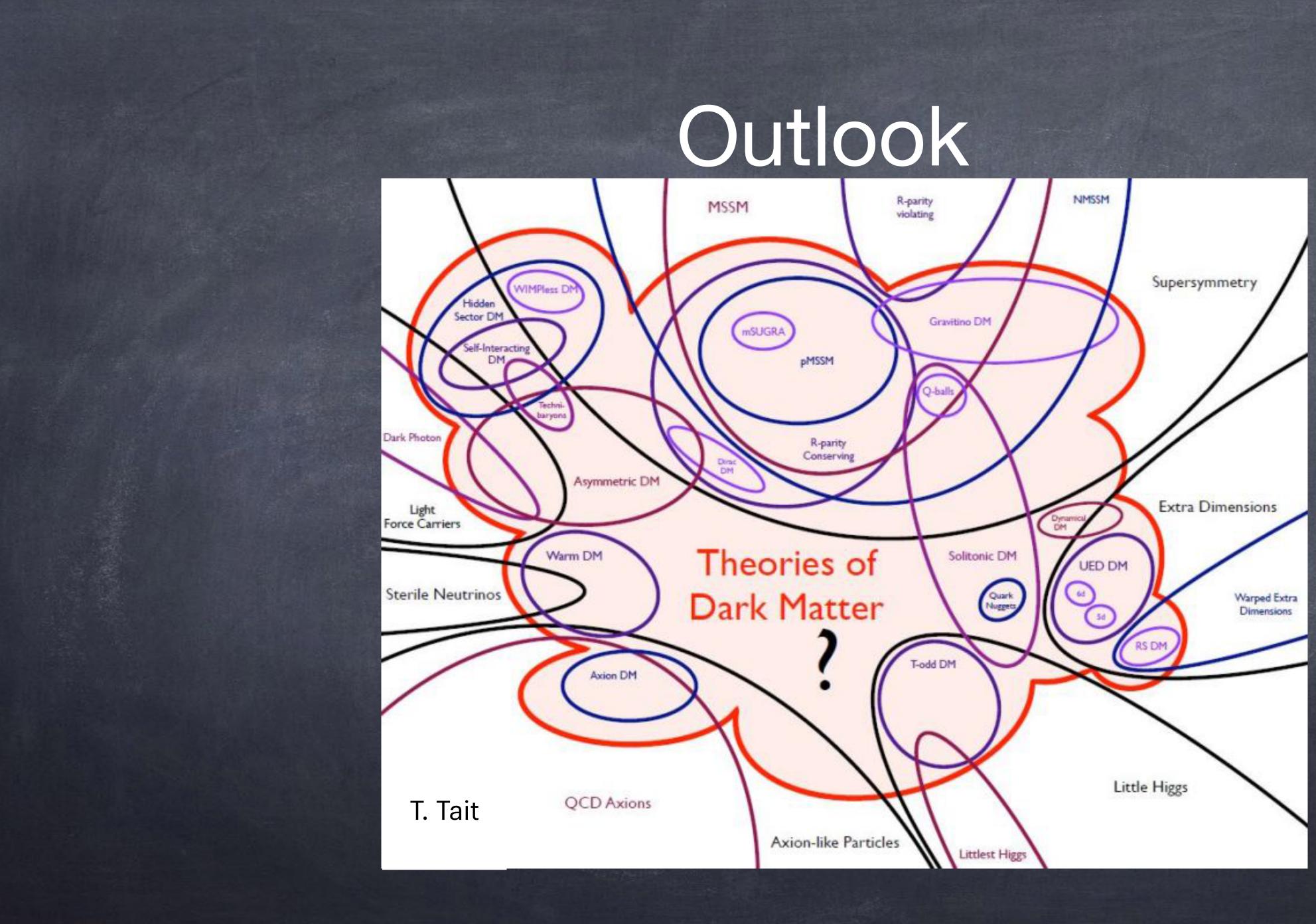
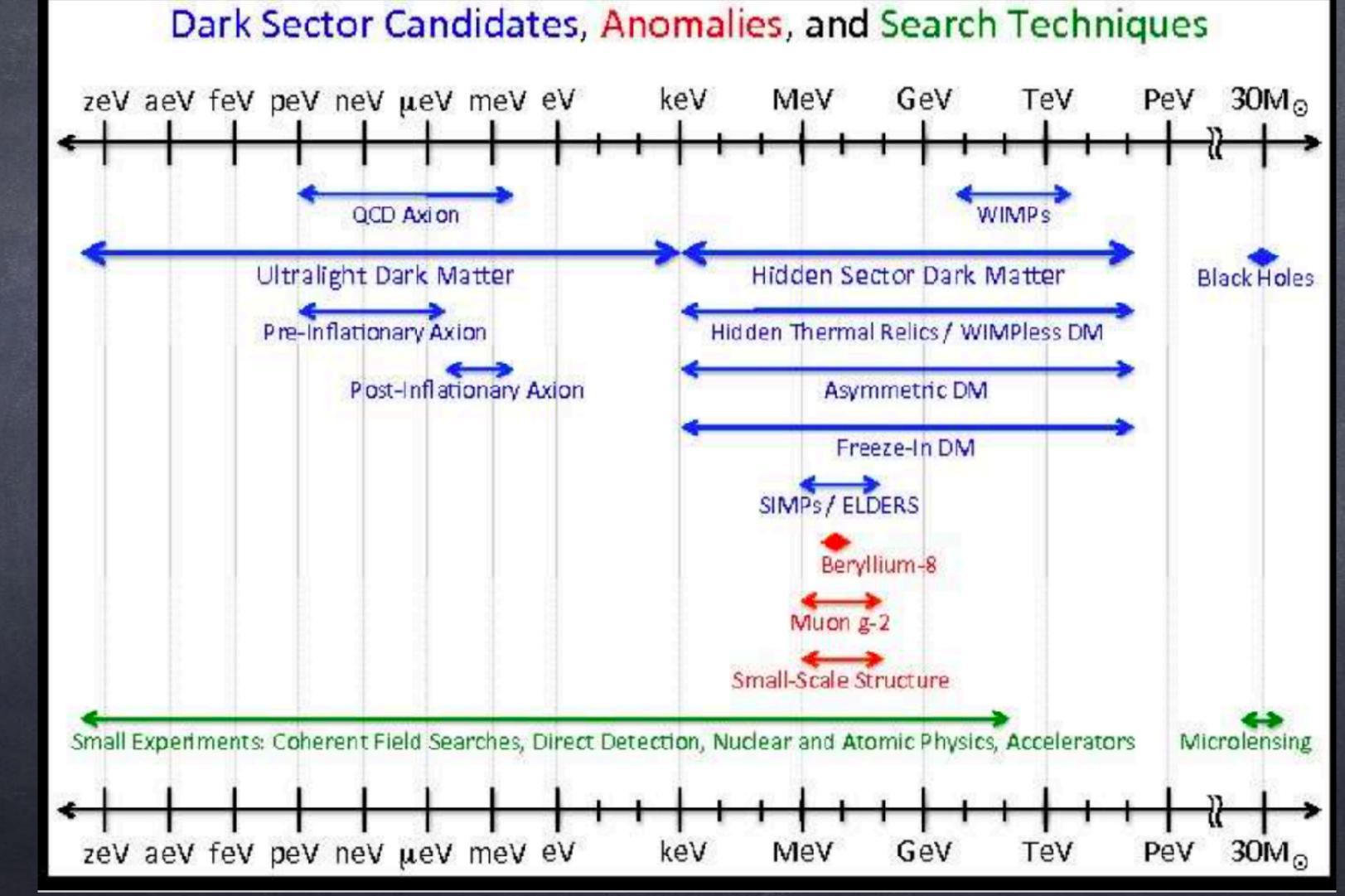


CHEP 2022 0 13 07 2022 Seung J. Lee XLI Bologna (Italy)

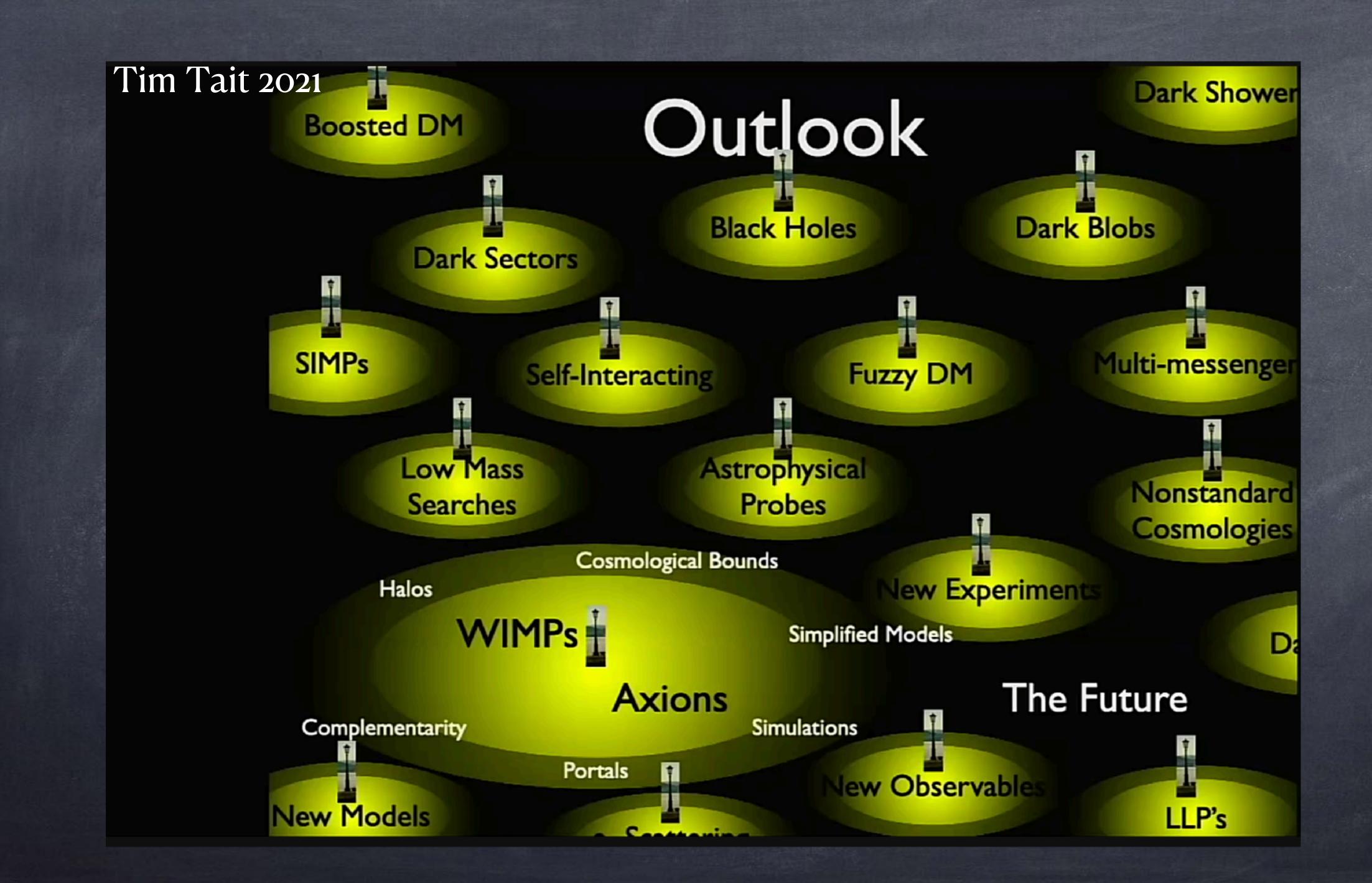
Massive gravitons as Feebly interacting Dark Matter Candidates

with Giacomo Cacciapaglia (Lyon) and Haiying Cai (Korea) Phys.Rev.Lett. 128 (2022) 8, 081806



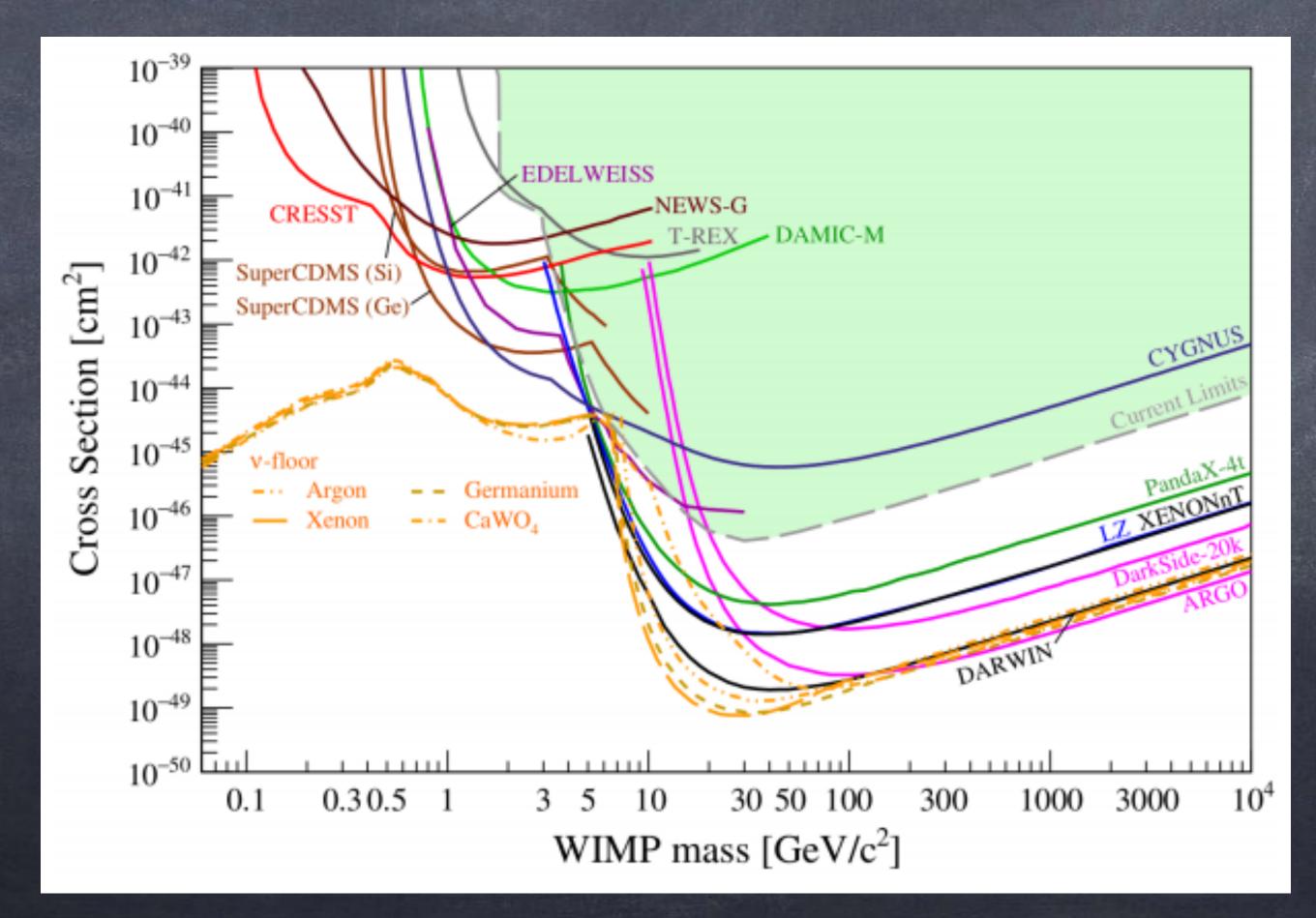


Outlook



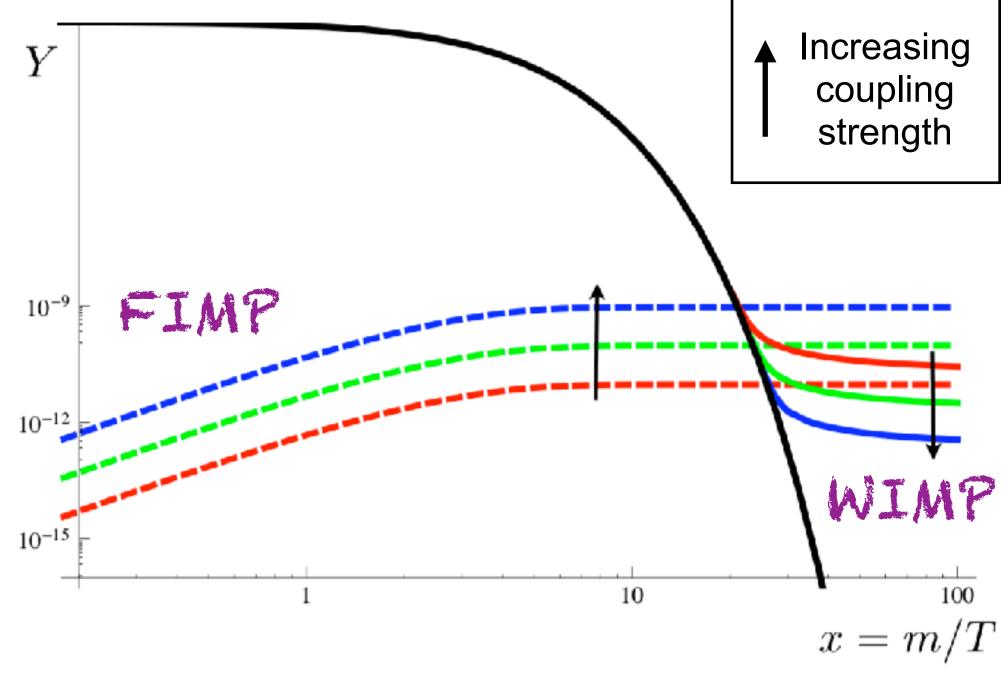
Dark Maller: where are we?

Strong constraints from Direct Detection:



From the APPEC DM report

Produced non-thermally via scattering or decays. 0

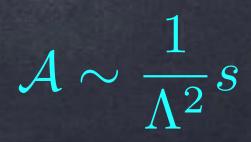


TMPS

Renormalisable int.: IR dominated!

 $\mathcal{A} \sim g^2$

Non-renorm. int.: UV dominated!



Gravity-interacting massive particles as FIMPs?

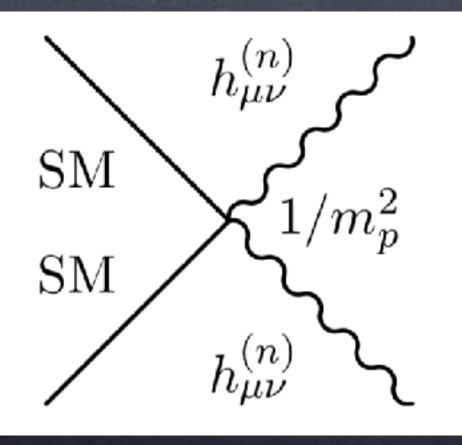
 $\mathcal{L}_{eff} = C_H \, G_{(n)}^{\mu\nu} \, T_{\mu\nu}^{\rm SM} \qquad C_H \sim \frac{1}{M_{\rm Pl}}$

 The freeze-in process will be inevitably UV dominated, hence depend crucially on the reheating temperature.

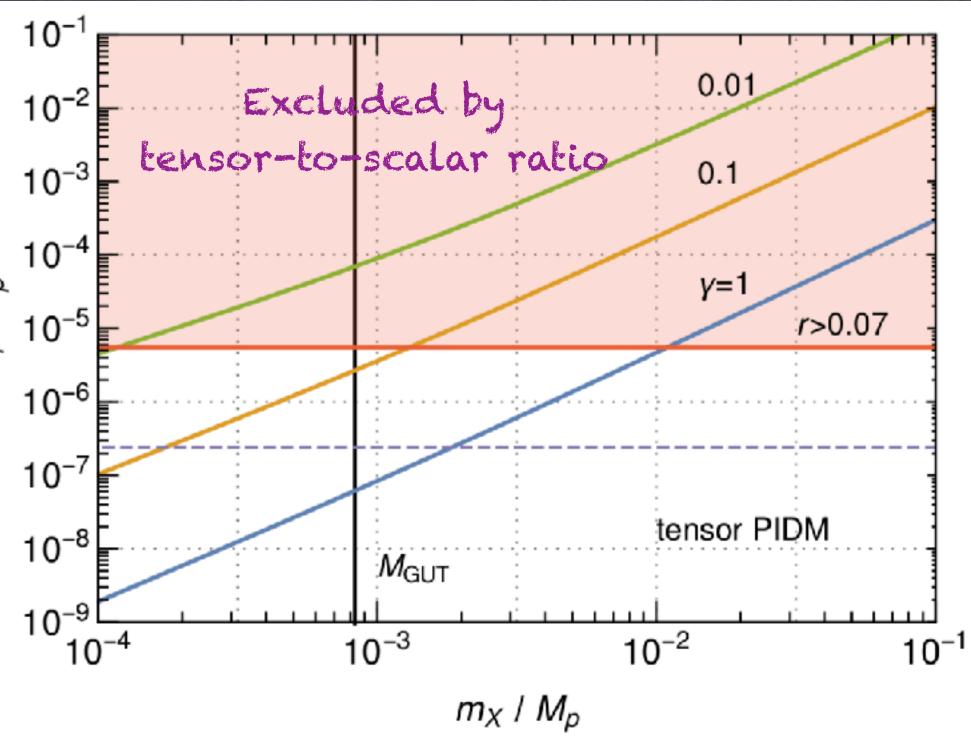
The coupling is very weak -> (very) large masses required!

Gravily-interacting massive particles as FIMPs?

KK gravitous from a flat Xdim (stable by KK parity)



 $\mathcal{L}_{eff} = C_H \, G_{(n)}^{\mu\nu} \, T_{\mu\nu}^{\rm SM} \qquad C_H \sim \frac{1}{M_{\rm Pl}}$



M.SLoth et al, 1709.09688

Chiral enhancement on the rescue

What happens for light gravitons?
We consider a general case, one massive graviton and no parity.

 $\mathcal{L}_{eff} = C_H \, G_{(n)}^{\mu\nu} \, T_{\mu\nu}^{\rm SM} \qquad C_H \sim \frac{1}{M_{\rm Pl}}$

 \circ Let's consider the process: $q + \bar{q} \rightarrow \text{gluon} + G$

For massless fermion:

$$\mathcal{A}^0_{\bar{q}q} = \frac{128\pi}{3} C_H^2 g_s^2 s$$

(in line with the naive expectation)

What happens for light gravitons? . We consider a general case, one massive graviton and no parity.

 $\mathcal{L}_{eff} = C_H \, G_{(n)}^{\mu\nu} \, T_{\mu\nu}^{\rm SM} \qquad C_H \sim \frac{1}{M_{\rm Pl}}$

 \circ Let's consider the process: $q + \bar{q} \rightarrow \text{gluon} + G$

For massless fermion:

$$\mathcal{A}^0_{\bar{q}q} = \frac{128\pi}{3} C_H^2 g_s^2 s$$

(in line with the naive expectation)

Chiral enhancement on the rescue

For massive fermion:

 $_ 256\pi C_H^2 g_s^2 m_q^2 s \left(s + 2m_q^2\right)$ ${\cal A}_{ar q q}$. $9M_{G}^{4}$

(applies below the EW phase transition)

Chiral enhancement on the rescue

For massive fermion:

$$\mathcal{A}_{\bar{q}q} = \frac{256\pi C_H^2 g_s^2 m_q^2 s \left(s + 2m_q^2\right)}{9M_G^4}$$

· Easy to understand: it comes from the longitudinal mode of the massive graviton

sum over graviton polarisations:

 $P_{\mu\nu} = \eta_{\mu\nu} - \left(\frac{k_{\mu}k_{\nu}}{M_G^2}\right)$

$$P_{\mu\nu,\alpha\beta} = \frac{1}{2} \left(P_{\mu\alpha} P_{\nu\beta} + P_{\nu\alpha} P_{\mu\beta} - \right)$$

Huge enhancement!

Chiral enhancement on the rescue

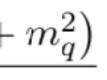
For massive fermion:

$$\mathcal{A}_{\bar{q}q} = \frac{256\pi C_H^2 g_s^2 m_q^2 s \left(s + 2m_q^2\right)}{9M_G^4}$$

$$\mathcal{A}_{qg} = \mathcal{A}_{\bar{q}g} = \frac{256\pi C_H^2 g_s^2 m_q^2 \left(s - m_q^2\right)^2 \left(s + \frac{3sM_q^2}{3}\right)^2 \left(s - \frac{$$

Similar processes with the photon smaller by the electromagnetic coupling. Heavier quarks contribute: bottom and charm. (the top is not in thermal equilibrium)

Huge enhancement!



o Computing the relic density

$$Y_{\rm IR} \simeq \frac{1}{2048\pi^6} \int_{T_{QCD}}^{T_C} \frac{dT}{SH} \left(\int_{4m_q^2}^{\infty} ds (s - 4m_q^2) K_1 \left(\frac{\sqrt{s}}{T} \right) + 2 \int_{m_q^2}^{\infty} ds \frac{(s - m_q^2)^2}{s^{3/2}} A_{qg} K_1 \left(\frac{\sqrt{s}}{T} \right)$$

Numerically:

$$\Omega_{\rm IR}h^2 = \frac{M_G}{3.6 \times 10^{-9} \text{ GeV}} Y_{\rm IR}$$
$$\simeq 3.0 \times 10^{31} \text{ GeV}^5 \frac{C_H^2}{M_G^3}$$

Chiral enhancement ON CHE TESCUE

$$\mathcal{A}_{\bar{q}q} = \frac{256\pi C_H^2 g_s^2 m_q^2 s \left(s + 2m_q^2\right)}{9M_G^4}$$

 $)^{1/2}A_{\bar{q}q}$

 $\left(\right) \right), \quad (8)$

Integral starts at the EN phase transition temperature!

For Planck couplings, this indicates MeV graviton mass.

The graviton can decay:

For Mev masses:

0

Hence: 0

 $\Omega_{\rm IR} h^2 \lesssim 0.12 \times \left(\frac{1.6 \text{ MeV}}{M_G}\right)^6 \frac{10^{27} \text{ Sec}}{\tau_G}$

This is not the end of the game...

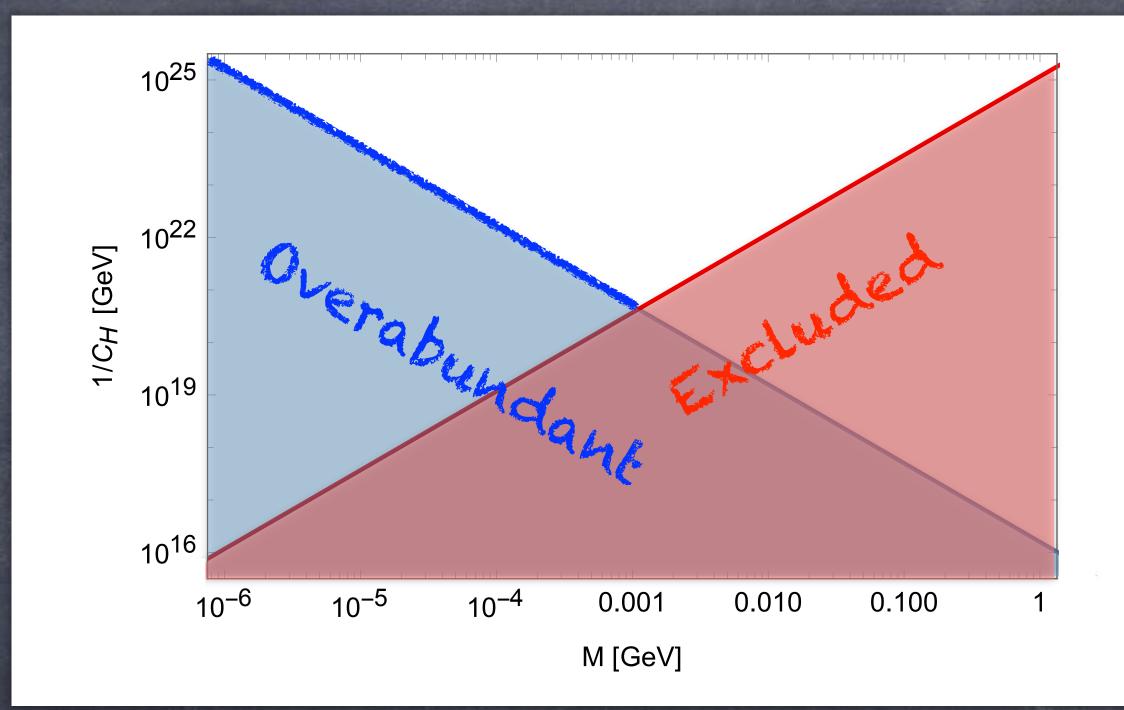
 $\Gamma(G \to e^+ e^- + \nu_i \bar{\nu}_i + \gamma \gamma) \simeq \frac{9C_H^2 M_G^3}{320\pi}$

Lifetime bounded by CMB and indirect detection:

 $\tau_G > 10^{27} \text{ sec}$

1309.4091, 1610.10051

This is not the end of the game...



$$\Omega_{\rm IR} h^2 \lesssim 0.12 \times \left(\frac{1.6 \text{ MeV}}{M_G}\right)^6 \frac{10^{27} \text{ Sec}}{\tau_G}$$

o We discovered a chiral enhancement in processes involving SM fermions (and one massless gauge boson).

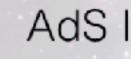
The FIMP relic becomes IR-dominated, even though generated via non-renorm interactions.

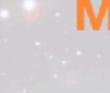
A massive graviton below 1.6 MeV can saturate the DM relic density.

Can we embed this graviton in a complete model? 0

Summary so far:

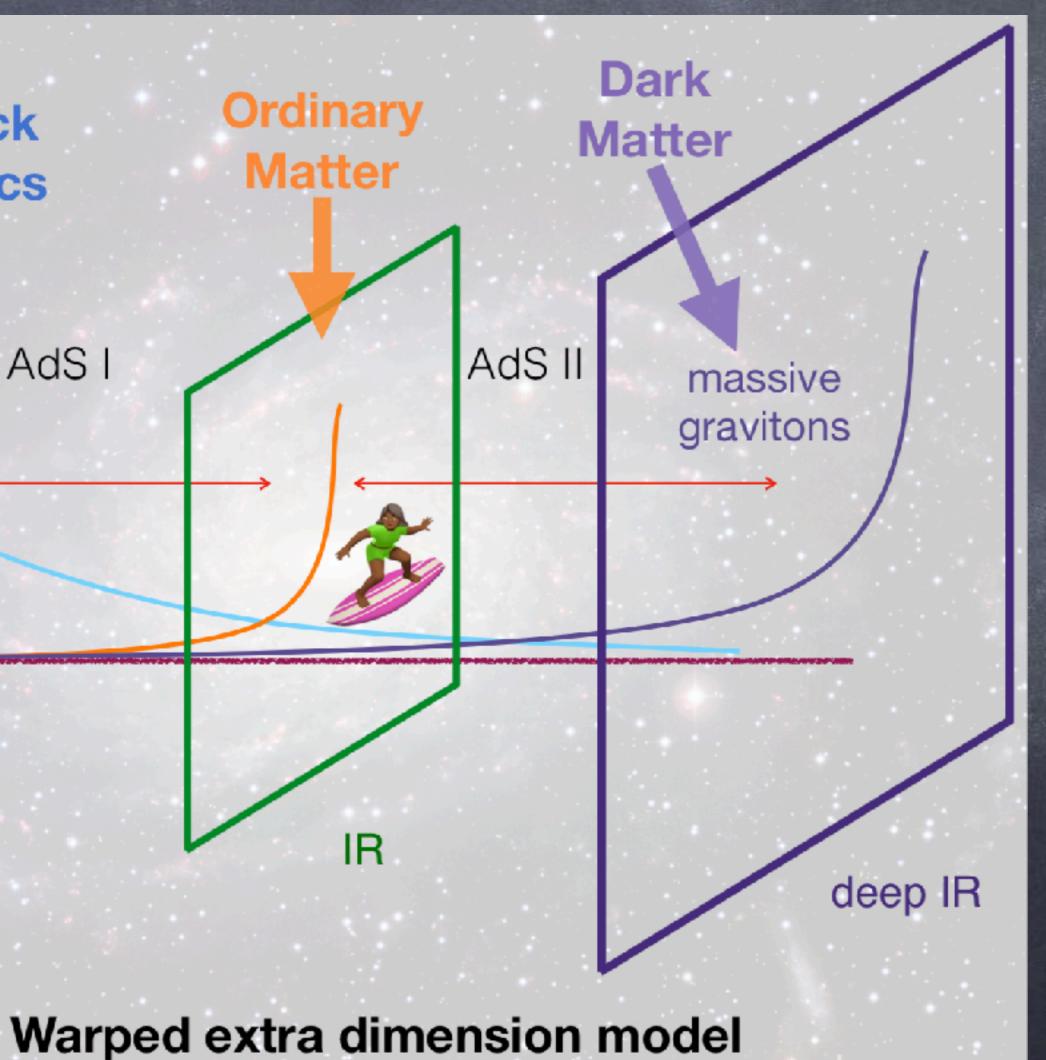
Example: Chree-brane warped extra dimension





gravity

Agashe et al, 1608.00526 Lee et al, 2109.10938



Here enters the radion

multi-component DM may be allowed.

A light radion r is also present:

$$\begin{aligned} \mathcal{L}_{eff} &= C_H \sum_{i} G^{(n)\mu\nu} T^{i}_{\mu\nu} + d_V r V_{\mu\nu} V^{\mu\nu} \\ &+ C_r \left(2G^{(n)\mu\nu} G^0_{\mu\nu} - G^{(n)\mu}_{\mu} G^{0\nu}_{\nu} \right) \Box r \\ &+ C_Q \mathcal{Q}(G^3, G^2 r, Gr^2, r^3) \,, \end{aligned}$$

 $C_H \sim C_r \sim \frac{1}{M_{\rm Pl}}$

The theory features many KK massive gravitons. Hence

$$C_{H} = \frac{1}{\Lambda_{H}} \frac{x_{n}^{2}}{4\sqrt{2} J_{2}(x_{n})},$$

$$C_{r} = \frac{1}{M_{pl}} \frac{\sqrt{6}(1 - J_{0}(x_{n}))}{x_{n}^{2} J_{2}(x_{n})},$$

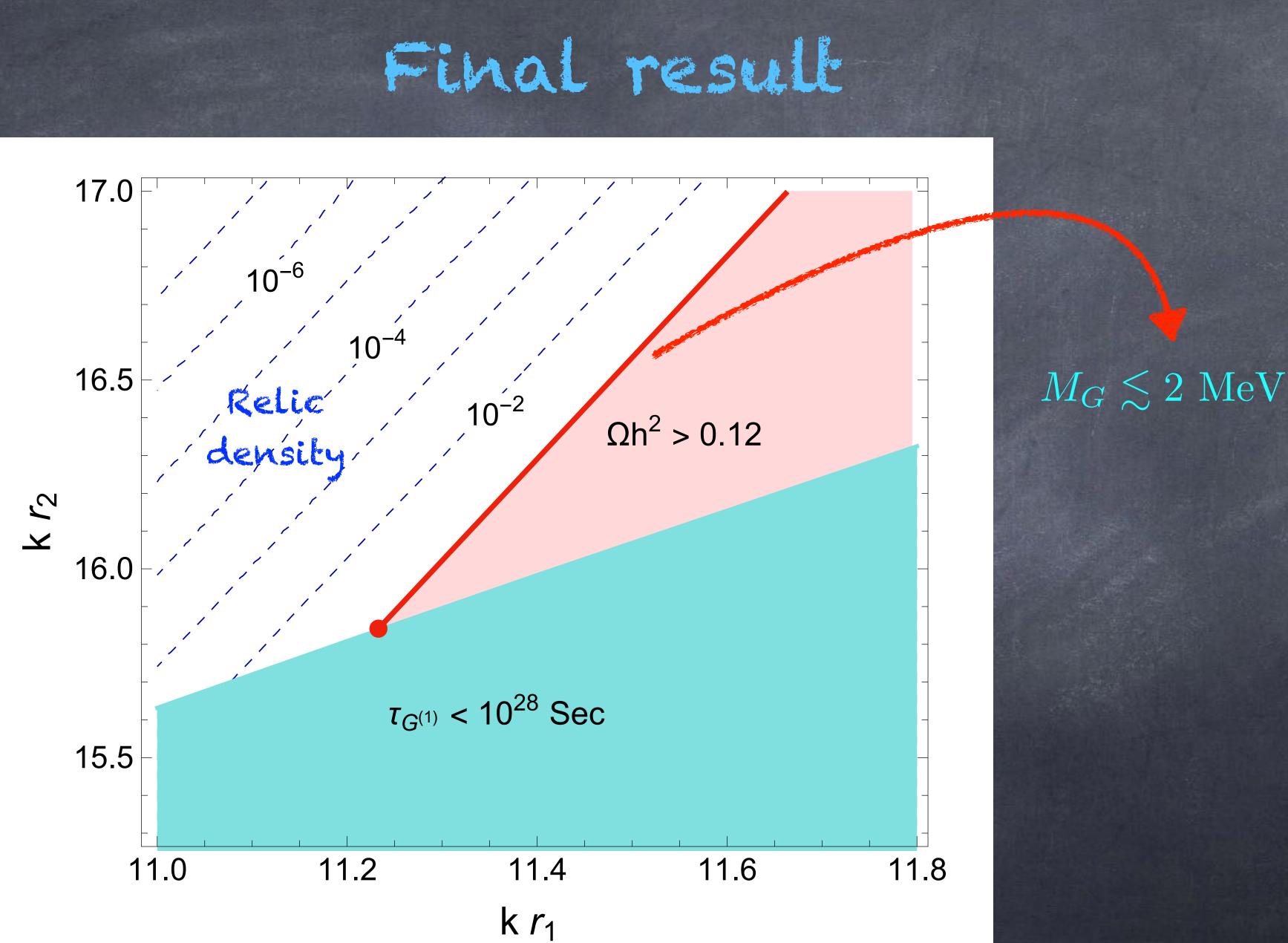
 $C_{\mathcal{Q}} \sim \frac{1}{\Lambda_{IR}} \gg \frac{1}{M_{\text{Pl}}}$

Here enters the radion

a Lifetime of the KK gravitous: 1) $2m_r < M_{G1}$ Prompt decays of KK gravitons in radions. 2) $M_{G1} < 2m_r < M_{G2}$ $G_1 \rightarrow G_0 + r$ Planck-suppressed $G_2 \rightarrow 2r$ Prompt $2m_r > M_{G2}$ $G_{3+} \rightarrow 2G_1$ while G2 stable

10¹⁶ k *r*₁= 11.0 10¹² Sec) 10⁸ (× 10¹⁷ 10⁴ G1F r 10^{-4} 15.5 16.0 16.5 14.5 15.0 17.0 $k r_2$

Case 3 is safer, as it leads to longer Lifetimes for G1. G2 remains also long-lived.



Conclusions

Massive graviton production enhanced below the EW
 breaking scale (chiral enhancement)

· Freeze-in dominated by the EW scale

For masses below 2 MeV, the correct relic can be
 obtained

This applied to a general class of spin-2 models