

Study of charm diffusion with jet-D⁰ correlation in heavy ion collisions with CMS

Jing Wang (MIT) For the CMS Collaboration

International Conference on High Energy Physics (ICHEP 2022) 7 July 2022 Bologna, Italy

MITHIG group's work was supported by US DOE-NP

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

Study effects decoupling charm from jet

Fragmentation modification in medium

Study effects decoupling charm from jet

- Fragmentation modification in medium
- Gluon splitting
 - Not fully understood even in pp

Diffusion

Study effects decoupling charm from jet

- Fragmentation modification in medium
- Gluon splitting
 - Not fully understood even in pp
- Diffusion in medium
 - More sensitive observable than inclusive measurements (R_{AA}, v₂)

Study effects decoupling charm from jet

- Fragmentation modification in medium
- Gluon splitting
 - Not fully understood even in pp
- Diffusion in medium
 - More sensitive observable than inclusive measurements (R_{AA}, v₂)
- Medium response
 - Hard partons change the medium that will change the jet in return as well

Study effects decoupling charm from jet

- Fragmentation modification in medium
- Gluon splitting
 - Not fully understood even in pp
- Diffusion in medium
 - More sensitive observable than inclusive measurements (R_{AA}, v₂)
- Medium response
 - Hard partons change the medium that will change the jet in return as well
- Recombination in medium
 - Combined with uncorrelated partons

Radial Profile for Light Flavor

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

- Energy redistribution to farther distance from jet axis observed for light flavors
- Can heavy quarks see the modification?

JHEP 05 (2018) 006

Observable and Dataset

• Dataset

- Jet-triggered events in pp (27.4 pb⁻¹) and PbPb (404 μ b⁻¹) collisions at 5.02 TeV collected in 2015
- Cross-checked with D-triggered events
- Observable
 - Radial profile of D⁰ w.r.t. jet axis

$$\frac{1}{N_{\rm JD}} \frac{\mathrm{d}N_{\rm JD}}{\mathrm{d}r_{\rm JD}}$$

- The final distribution is normalized to unity in r < 0.3
- No p_T weight as light-hadron jet shape

Physics Object Reconstruction

- Jet
 - Particle flow jets, anti- k_T , R = 0.3
 - p_T^{jet} > 60 GeV/c
 - ▶ |ŋ^{jet}| < 1.6</p>
- D⁰ reconstruction
 - $D^0 \rightarrow K\pi$
 - Topological selections
 - ► |y^D| < 2
 - Two p_T bins
 - 4 < p_T^D < 20 GeV
 - p_T^D > 20 GeV

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

9

D⁰ Yield Extraction

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

 Subtract combinatorial background of D⁰ via invariant mass fits Remove underlying event background using event mixing method

Results: Radial Profile of D⁰ in pp

- Reach maximum at 0.05 < r < 0.1
- Similar to light flavor

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

- Fall rapidly as a function of r
- Similar to light flavor

PRL 125 (2020) 102001

Results: pp vs. Simulation

- Qualitatively described by SHERPA

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

Good agreement with PYTHIA \rightarrow gluon splitting not plays important role?

PRL 125 (2020) 102001

Results: Radial Profile of D⁰ in PbPb

Hint of D⁰ distributed farther from jet axis in PbPb than pp

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

PbPb consistent with pp

PRL 125 (2020) 102001

Results: pp vs. PbPb

- Enhancement at large r
- Different predictions from models

- Ratio consistent with unity
- Predicted by CCNU calculation

- Similar trend in LHC and RHIC?

Results: LHC vs. RHIC

STAR (AuAu @ 200 GeV)

Note different kinematics, observable and reference

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

15

Summary

- First measurement of the radial profile of D⁰ in jets in PbPb and pp

 - High D⁰ p_T: Consistent distribution in pp and PbPb
- Provides new experimental inputs on
 - heavy-flavor production, energy loss and diffusion behavior
- A new measurement using the latest data is under going

• Low $D^0 p_T$: Hint of enhancement of D^0 at large angle w.r.t. jet axis in PbPb

Isabelle

Thanks for your attention!

41.9 5

Jing Wang (MIT), D-jet Correlation in HIC with CMS, ICHEP 2022 (Bologna, Italy)

Back up

Thanks for your attention!

