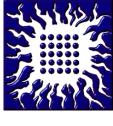


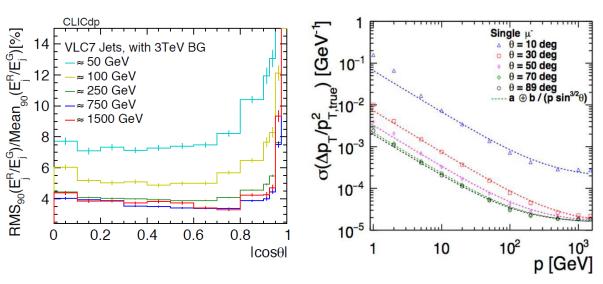
Determination of CPV Higgs mixing angle in ZZ-fusion at 1.4 TeV CLIC

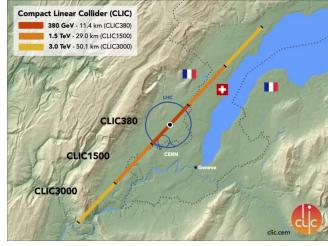
Natasa Vukasinovic

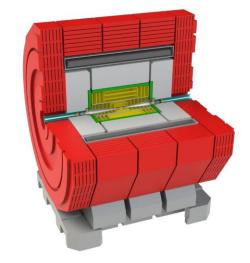

VINCA Institute of Nuclear Sciences, Belgrade, SERBIA

on behalf of the CLICdp Collaboration

International Conference on High Energy Physics 2022, 6-13 July 2022


Overview



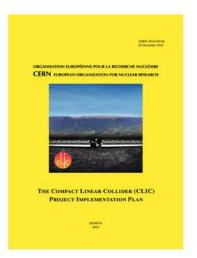

- Accelerator and Detector for CLIC
- Higgs studies at CLIC
 - Higgs couplings
 - Higgs self-coupling
 - BSM Higgs physics
- CPV in ZZ-fusion at 1.4 TeV CLIC
 - Sensitive observable
 - Event selection
 - Reconstruction of sensitive observable
- Summary

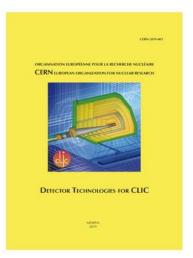
Accelerator & detector

- CLIC is a mature option for e⁺e⁻ collider at CERN
- Energy staged from 380 GeV up to 3 TeV
- Two-beam acceleration scheme (acceleration gradient 100 MV/m)
- Proven technology at CLIC Test Facility CLEAR (CTF3)

CLICdet

- Optimized for physics program in broad range of studies
- Particle reconstruction and identification with Particle Flow Algorithm
- Jet energy resolution (3-5)% →separation of H/W/Z jets
- Efficient lepton identification and p_T measurement $(\Delta p_T/p_T^2) \sim 2 \cdot 10^{-5}$ GeV⁻¹


Status of the project

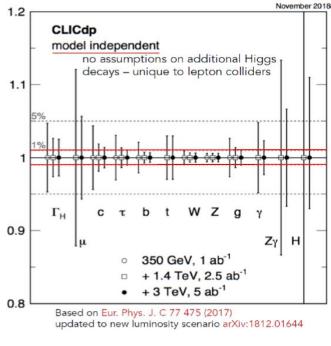


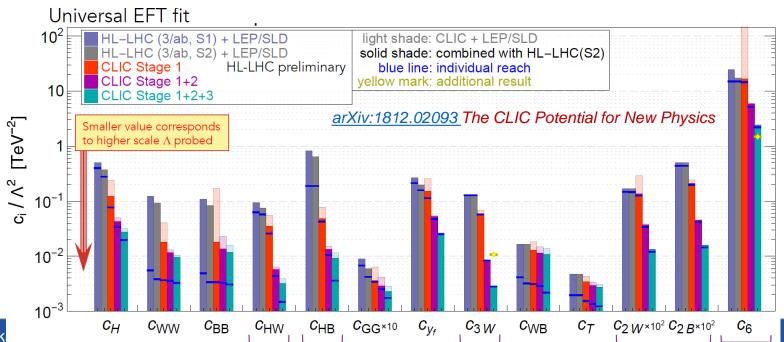
- Mature project, ready for construction if recommended by the next EPPS
- Key accelerator technologies have been proven
- The full project status has been presented in series of Yellow reports
- Genuine advantages of a high energy e⁺e⁻ collider
 - Clean experimental environment, no pile-up, no trigger→uncertainies are dominated by statistics
 - Luminosity rises with energy
 - Highest energy reach brings excellent precision for the Higgs self-coupling measurement as well as BSM physics reach

CERN-2018-005-M

CERN-2018-009-M

CERN-2018-010-M

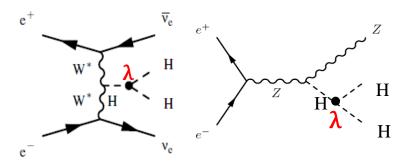

CERN-2019-001

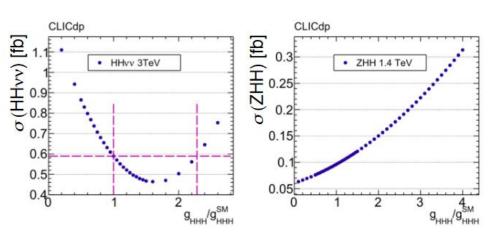

Higgs studies

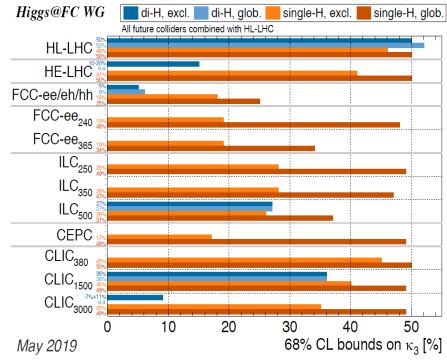
Higgs couplings

- At e⁺e⁻ colliders:
 - Absolute measurement of a HZ cross section
 - Absolute measurement of Γ_H
- Most couplings (WW, ZZ, bb) can be determined well below 1% in a model-independent way

Sensitivity to probe new physics scale, an order of magnitude improvement w.r.t. HL-LHC


Higgs studies

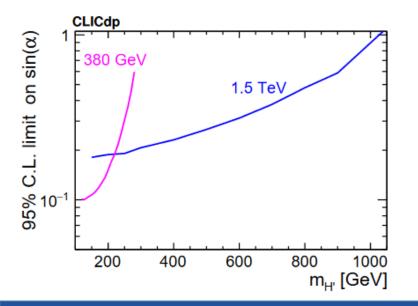



Higgs self-coupling

- Determines the shape of the Higgs potential
- Different behaviour of HHvv and HHZ x-section resolves ambiguity for non-SM values of λ

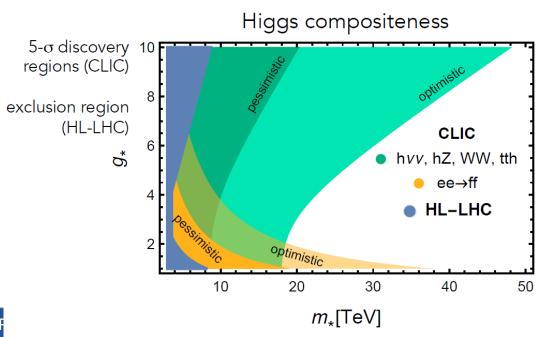
- CLIC has excellent sensitivity in Higgs selfcoupling measurement
 - Combined result (1.4 TeV + 3 TeV) $\lambda/\lambda^{SM} = (-8\%, +11\%)$ at 68% CL

Higgs BSM studies



Invisible Higgs decays in VFDM

- Connection between SM and dark matter sector
- Extended Higgs sector with additional scalar
 φ mixed in with h


$$\binom{H}{H'} = \binom{\cos\alpha \sin\alpha}{-\sin\alpha \cos\alpha} \binom{h}{\phi}$$

- BR(H \rightarrow inv) ~ $sin^2\alpha$, BR(H' \rightarrow inv) ~100%
- 95% CL limits on $\sin \alpha$ up to 1 TeV $m_{H'}$

Composite Higgs

- Composite Higgs would affect couplings EFT limits of the characteristic coupling strength g^* and mass scale m^*
 - CLIC can discover compositeness up to ≥10TeV compositeness scale
 - Significantly above the HL-LHC exclusion range

Higgs BSM studies CPV in the Higgs sector

- Baryon asymmetry of the Universe is still unresolved phenomena
- New source of CPV can be introduced in the extended Higgs sector
- HVV and Hff vertices can be probed in various Higgs production and decay channels
- There are very few results at future colliders, mostly in $H \to \tau \tau$ and ttH

Our study:

Generic model of CPV mixing (via angle Ψ_{CP}) of scalar and pseudoscalar states:

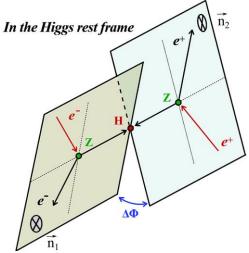
$$h = H \cdot cos\Psi_{CP} + A \cdot sin\Psi_{CP}$$

Changing the tensor structure of g_{HZZ} coupling

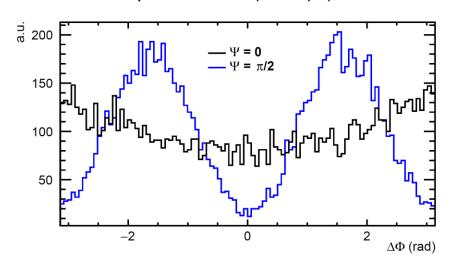
$$g_{HZZ} = ig \frac{M_Z}{cos\theta_W} (\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 + p_2)_\sigma}{M_Z^2})$$

where $\lambda_{\rm H} = \cos \Psi_{\rm CP}, \ \lambda_{\rm A} = \sin \Psi_{\rm CP}, \quad p_1, \ p_2$ are the 4-momenta of the vector bosons

CPV in the Higgs sector


Sensitive observable

- Information on spin orientations of VV states is contained in the angle ΔΦ between production planes
- $\Delta\Phi$ can be retrieved as the angle between unit vectors $(\vec{n}_1 \text{ and } \vec{n}_2)$ orthogonal to these planes:

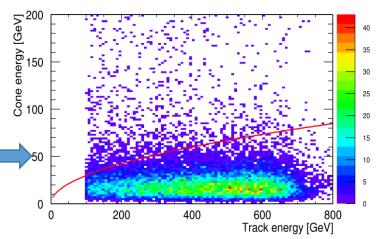

$$\Delta \Phi = a \cdot \arccos(\hat{n}_1 \cdot \hat{n}_2), \qquad a = \frac{q_{Z_e^-} \cdot (\hat{n}_1 \times \hat{n}_2)}{|q_{Z_e^-} \cdot (\hat{n}_1 \times \hat{n}_2)|}$$

and
$$\hat{n}_1 = \frac{q_{e_i^-} \times q_{e_f^-}}{|q_{e_i^-} \times q_{e_f^-}|},$$
 $\hat{n}_2 = \frac{q_{e_i^+} \times q_{e_f^+}}{|q_{e_i^+} \times q_{e_f^+}|}$

a defines how the second (positron) plane is rotated w.r.t. the first (electron) plane; If it falls backwards (as illustrated) a = -1, otherwise a = 1. Direction of Z in the e-plane regulates the notion of direction (fwd. or back.) using the right-hand rule.

Whizard v2.8.3 pure scalar ($\Psi = 0$) and pseudoscalar ($\Psi = \pi/2$)

CPV in the Higgs sector



Method

- Higgs boson is produced in ZZ-fusion
- Consider H \rightarrow b \bar{b} to obtain clear signature e⁺e⁻ + 2b-jets
- Isolate electrons (E_{track} , d_0 , z_0 , R_0 , $E_{ECAL}/(E_{ECAL}+E_{HCAL})$, E_{track} vs. E_{cone} + 2 e per event
- Suppress background with MVA
- Reconstruct ΔΦ
- Fit Ψ_{CP} from $\Delta\Phi$ distribution
- Repeat pseudo-experiments to extract MAD

^{*} Expected in the tracker, others are in the full range

Expedited in the tracker, others are in the run range						
Process	σ (fb)	Expected in 2.5 ab ⁻¹				
$e^+e^- o Hee$, $H o b\overline{b}$	4.16*	~10,400*				
$e^+e^- \rightarrow q\bar{q}l^+l^-$	2725.8	6,814,500				
$e^+e^- o q\bar{q}lv$	4309.7	10,774,250				
$e^+e^- o q \bar{q} \bar{\nu}_e \nu_e$	787.7	1,969,250				
$e^+e^- \to q\bar{q}$	4009.5	10,023,750				
$\gamma\gamma \to q\bar{q}ee$	4.54	14,950				

 ε_{pres} = 80%

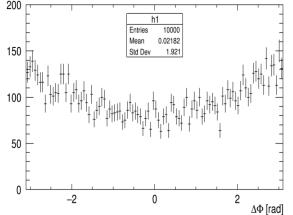
Background efficiency:

 $\gamma\gamma \rightarrow q\bar{q}ee \sim 8\%$

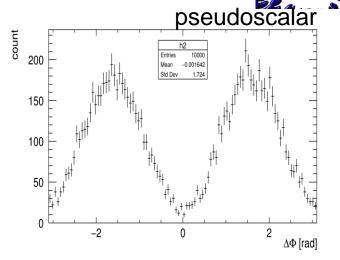
All others ≤ 1%

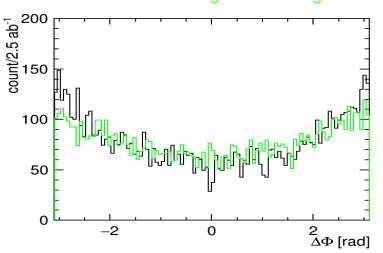
BDT cut-off value: 0.1654

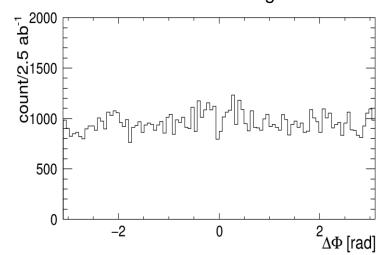
BDT efficiency: 94%


Total signal efficiency (preselection + BDT): 75%

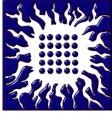
Signal events after MVA: 7810 / 2.5 ab⁻¹


Background events after MVA: <1 / 2.5 ab⁻¹


Generator level first

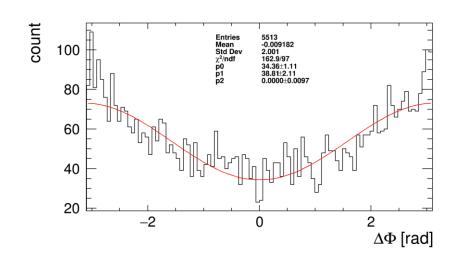

scalar

Full simulation, reconstruction, selection vs. generated signal

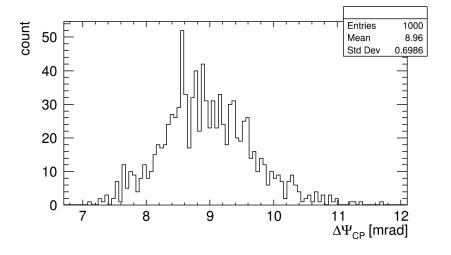


Summary

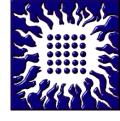
- CLIC is a mature project, ready for construction already after the next EPPS
- Multi-TeV energy stages enable measurement of the Higgs properties with enhanced precision and in synergy with the HL-LHC
- Measurement of the Higgs self-coupling with excellent sensitivity and discovery potential for BSM physics benefit from the highest center-ofmass energies
- CPV in the Higgs sector is an interesting BSM option. We look into ZZfusion at 1.4 TeV CLIC
- Preliminary study indicates promising sensitivity of the reconstructed observable to measure CPV mixing angle between scalar and pseudoscalar states


Additional material

Pseudoexperiments



Single pseudoexperiment


 $\Delta \psi_{CP} = (0.0 \pm 9.7) mrad$

MAD – median of the absolute deviations of repeated measurement

$$\Delta \psi_{CP} = (0.0 \pm 9.0) mrad$$

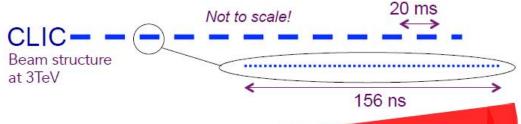
15

Higgs coupling sensitivity

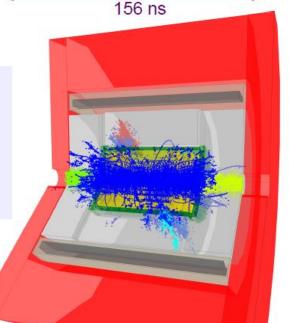
	Benchmark	HL-LHC	HL-LHC + CLIC		HL-LHC + FCC-ee	
			$380 (4ab^{-1})$	380 (1 ab ⁻¹)	240	365
				$+ 1500 (2.5 ab^{-1})$		
$g_{HZZ}^{ m eff}[\%]$	SMEFT _{ND}	3.6	0.3	0.2	0.5	0.3
$g_{HWW}^{ m eff}[\%]$	$SMEFT_{ND}$	3.2	0.3	0.2	0.5	0.3
$g_{H\gamma\gamma}^{ m eff}[\%]$	$SMEFT_{ND}$	3.6	1.3	1.3	1.3	1.2
$g_{HZ\gamma}^{\mathrm{eff}}[\%]$	SMEFT _{ND}	11.	9.3	4.6	9.8	9.3
$g_{H\gamma\gamma}^{\mathrm{eff}}[\%]$ $g_{HZ\gamma}^{\mathrm{eff}}[\%]$ $g_{Hgg}^{\mathrm{eff}}[\%]$ $g_{Hgg}^{\mathrm{eff}}[\%]$	$SMEFT_{ND}$	2.3	0.9	1.0	1.0	0.8
$g_{Htt}^{\mathrm{eff}}[\%]$	$SMEFT_{ND}$	3.5	3.1	2.2	3.1	3.1
$g_{Hcc}^{en}[\%]$	SMEFT _{ND}	_	2.1	1.8	1.4	1.2
$g_{Hbb}^{ m eff}[\%]$	$SMEFT_{ND}$	5.3	0.6	0.4	0.7	0.6
$g_{H\tau\tau}^{\mathrm{eff}}[\%]$	$SMEFT_{ND}$	3.4	1.0	0.9	0.7	0.6
$g_{H\mu\mu}^{ m eff}[\%]$	SMEFT _{ND}	5.5	4.3	4.1	4.	3.8
$\delta g_{1Z}[\times 10^2]$	SMEFT _{ND}	0.66	0.027	0.013	0.085	0.036
$\delta \kappa_{\gamma} [\times 10^2]$	$SMEFT_{ND}$	3.2	0.032	0.044	0.086	0.049
$\lambda_Z[\times 10^2]$	SMEFT _{ND}	3.2	0.022	0.005	0.1	0.051

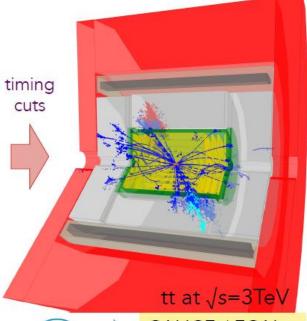
1 1 1

From European Strategy Briefing Book and arXiv:2001.05278


CLIC baseline

CLIC longer first stage


Collider environment



Precise timing required for beam background rejection

1ns in calorimetry, 5ns in vertexing/tracking

High bunch charge density -> beam-related backgrounds small effect at \(\s=380 \text{GeV} \) large effect at high energies

High precision:

jet energy resolution -> fine-grained calorimetry momentum resolution impact parameter resolution

 $\sigma(E)/(E) \sim 3.5\%$ for E > 100GeV $\sigma(p_T)/p_T^2 \sim 2x10^{-5} \text{ GeV}^{-1}$ $\sigma_{d0} \sim 5 \oplus 15/(p[\text{GeV}] \sin^{3/2}\theta) \, \mu\text{m}$

CALICE / FCAL DESY.

> CLICdp vertexing/ tracking programme