

Recent results from supersymmetry search combinations with the ATLAS and CMS experiments

Jaana Heikkilä (University of Zürich) on behalf of the ATLAS and CMS experiments
ICHEP2022 - July 8 - Bologna

	University of Zurich ${ }^{\text {UZH }}$

Expanding the standard SUSY searches

Targeting challenging and rare SUSY signatures

The very first statements on SUSY using the Run 2 data rolled out in 2016

- The quark-induced EWK sector has small cross sections
\rightarrow Emphasis on the strong sector and "standard" SUSY searches
\rightarrow Target final states with multiple SM objects, and large missing energy from undetected SUSY states

Standard searches

Signal in the tails of kinematic variable that has dimension of mass

Expanding the standard SUSY searches

Targeting challenging and rare SUSY signatures

The very first statements on SUSY using the Run 2 data rolled out in 2016

- The quark-induced EWK sector has small cross sections
\rightarrow Emphasis on the strong sector and "standard" SUSY searches
\rightarrow Target final states with multiple SM objects, and large missing energy from undetected SUSY states

Exploration of stops and the EWK sector relies on the Full Run 2 data

- Update the standard searches: novel analysis techniques
- Explore previously uncovered corners
- Compressed scenarios (small amount of visible energy)
- Sleptons (extremely low cross sections)

Combining the searches: more powerful together \rightarrow Consider various signal scenarios appearing in multiple places

Standard searches

Signal in the tails of
kinematic variable that has dimension of mass

Existing and future combinations of searches for stops and EWKinos

Combinations of searches for stop pairs

Stops: spartners of top quarks

Latest stop combination result is from the CMS Collaboration (2107.10892) - exclude stop masses up to ~1300 GeV!
Target direct stop pair production, with final states of two tops, two b quarks, or tb (mixed topology)
\rightarrow Event categories: 0/1/2 leptons - require MET and jets (use tagging e.g. for b jets)

These SUSY searches can be used to place constraints on (pseudo)scalars that mediate DM production

Combinations of searches for top pair+DM

A (pseudo)scalar ϕ (a) particle mediates the interaction between SM quarks and a DM candidate X

Event categories: 0/1/2 leptons - require MET and jets (use tagging e.g. for b jets)
ATLAS: Recent extension of the previous OL final state by adding a low MET category (MET decreased from 250 to 160 GeV)
\rightarrow Combine MET (MET $>250 \mathrm{GeV}$) and b-tagged jet triggers
\rightarrow Orthogonality ensured: require MET significance $S<14$ and no large-radius jets

Combinations of searches for top pair + DM

A (pseudo)scalar ϕ (a) particle mediates the interaction between SM quarks and a DM candidate X

Event categories: 0/1/2 leptons - require MET and jets (use tagging e.g. for b jets)
ATLAS: Recent extension of the previous OL final state by adding a low MET category (MET decreased from 250 to 160 GeV)
\rightarrow Combine MET (MET $>250 \mathrm{GeV}$) and b-tagged jet triggers
\rightarrow Orthogonality ensured: require MET significance $S<14$ and no large-radius jets
Combination of OL categories with the 1 L and 2 L categories performed by ATLAS and CMS

EWKino sector: Go compressed or go home!

LSP: the lightest supersymmetric particle (stable and neutral)
EWKinos (neutralinos and charginos): mass eigenstates formed by the mixing of Winos, Bino, and Higgsinos (spartners of the SM EWK bosons)
Compressed spectra: small mass splitting between the next-to-LSP and the LSP \rightarrow Can be explored in many models, such as with Bino LSP, and Wino NLSP or Slepton NLSP

But.... such scenarios come with a little bit of visible energy
\rightarrow Require e.g. an ISR jet to access the compressed cases
\rightarrow Small number of events (on top of the small XS)
\rightarrow Extremely challenging searches - benefit from combinations!

EWKino sector: Go compressed or go home!

LSP: the lightest supersymmetric particle (stable and neutral)
EWKinos (neutralinos and charginos): mass eigenstates formed by the mixing of Winos, Bino, and Higgsinos (spartners of the SM EWK bosons)
Compressed spectra: small mass splitting between the next-to-LSP and the LSP
\rightarrow Can be explored in many models, such as with Bino LSP, and Wino NLSP or Slepton NLSP
But.... such scenarios come with a little bit of visible energy
\rightarrow Require e.g. an ISR jet to access the compressed cases
\rightarrow Small number of events (on top of the small XS)
\rightarrow Extremely challenging searches - benefit from combinations!
The sleptons could explain the recent results on the muon g-2 anomaly, measured by the Fermilab and BNL experiments

EWKino combinations: chargino and neutralinos

The latest combination performed by ATLAS (2106.01676) targets production of chargino and neutralino, final states with W and Z boson \rightarrow Wino-like NLSP with Bino-like LSP ($\tilde{\mathrm{X}}_{1}{ }^{0}$) (alternatively Higgsino-triplet)

A 31 search (off- and on-shell Z boson) combined with a previously published 2l search ("compressed"); orthogonality is ensured by requirements on mll and MET, or lepton multiplicity
\rightarrow Results combined where greater exclusion power is expected over the individual results

EWKino combinations: chargino and neutralinos

The latest combination performed by ATLAS (2106.01676) targets production of chargino and neutralino, final states with W and Z boson \rightarrow Wino-like NLSP with Bino-like LSP ($\tilde{x}_{1}{ }^{0}$) (alternatively Higgsino-triplet)

A 31 search (off- and on-shell Z boson) combined with a previously published 21 search ("compressed"); orthogonality is ensured by requirements on mll and MET, or lepton multiplicity
\rightarrow Results combined where greater exclusion power is expected over the individual results

The same topologies have been explored by the CMS Collaboration (See back-up and talk by Zachary Flowers!)
\rightarrow Combination is in progress!

Search	ATLAS	CMS
2ℓ soft	1911.12606	2111.06296 (incl. 3 3 soft)
3ℓ	2106.01676	2106.14246 (incl. 2 $($ SS $)$ and $>3 \ell$)
Combination?	2106.01676	In progress

11
${ }^{*}+(-):$ Positive (negative) product of the two signed neutralino eigenmass parameters $m_{\text {eig }}\left(\tilde{\chi}_{2}^{0}\right) \times m_{\text {eig }}\left(\tilde{\chi}_{1}^{0}\right)$

Beyond the combinations: recent searches

ATLAS search targeting final states with two leptons, jets, and MET

Recent search from ATLAS targets production of chargino and neutralino with topologies WZ (wino-bino), and ZZ/ZH (GMSB)

NEW

$\underline{2204.13072}$
Maximal coverage for the models: 13 orthogonal search regions incl. a new SR for off-shell Z boson

Require 2 leptons (opposite-sign same-flavour), $1 / 2$ (b)jets, and MET

Mass windows used to target
on-/off-Z boson ($\left.m_{\|}\right)$, and
W, Z, H bosons (jet system m)
Signal extraction:
MET significance or mll

ATLAS search targeting final states with two leptons, jets, and MET

Recent search from ATLAS targets production of chargino and neutralino with topologies WZ (wino-bino), and ZZ/ZH (GMSB) \rightarrow Complement the previous search performed by CMS (targeting the same models)
NEW

Search	WZ	ZZ	ZH
ATLAS: $2 \ell+1 / 2 \mathrm{j}(2204.13072)$	\checkmark	\checkmark	\checkmark
CMS: 2 on-Z (2012.08600)	\checkmark	\checkmark	\checkmark

Wino-Bino interpretation: neutralino (chargino) $\tilde{\chi}_{2}^{0}\left(\tilde{X}_{1}^{+-}\right)$masses excluded up to $\sim 800 \mathrm{GeV}$ GMSB interpretation: neutralino \tilde{X}_{1}^{0} masses excluded up to $\sim 900 \mathrm{GeV}$ (ZZ decay)

ATLAS search targeting final states with two leptons, and MET

Recent search from ATLAS targets production of charginos with topology WW (semi-compressed spectra near W boson mass)

ATLAS-CONF-2022-006
Require 2 leptons (opposite-sign), MET, and no (b) jets

Main backgrounds SM WW, VZ,
Z+jets, ttbar+top from partially data-driven techniques

Two categories: same- and different flavour pairs
\rightarrow Discriminate signal from background using four BDTs: signal BDT for signal extraction, background BDTs: VV, top, others

ATLAS search targeting final states with two leptons, and MET

Recent search from ATLAS targets production of charginos with topology WW (semi-compressed spectra near W boson mass)

ATLAS-CONF-2022-006
Require 2 leptons (opposite-sign), MET, and no (b) jets

Main backgrounds SM WW, VZ,
Z+jets, ttbar+top from partially data-driven techniques

Two categories: same- and different flavour pairs
\rightarrow Discriminate signal from background using four BDTs: signal BDT for signal extraction, background BDTs: VV, top, others

Same search targets direct slepton pair production with a different strategy!

ATLAS search targeting final states with two leptons, and MET

NEW
Recent search from ATLAS targets direct slepton pair production (semi-compressed spectra near W boson mass)

The sleptons could explain the recent results on the muon g-2 anomaly, measured by the Fermilab and BNL experiments
Require 2 leptons (opposite-sign), MET, and additionally up to 1 jet (ISR) - no b jets

Main backgrounds SM WW, VZ, Z+jets, ttbar+top

ATLAS-CONF-2022-006

 $100 / 110 / 120 / 130 / 140 \rightarrow \infty$
ATLAS search targeting final states with two leptons, and MET

Recent search from ATLAS targets direct slepton pair production (semi-compressed spectra near W boson mass)

The sleptons could explain the recent results on the muon g-2 anomaly, measured by the Fermilab and BNL experiments

Require 2 leptons (opposite-sign), MET, and additionally up to 1 jet (ISR) - no b jets

Main backgrounds SM WW, VZ, Z+jets, ttbar+top (Flavour Symmetric Backgrounds, FSB)

Two event categories
Same-flavour. 0/1 jet signal regions
Different-flavour: estimate FSB
Signal extraction using $\mathrm{M}_{\mathrm{T}, 2}$ variable ($m_{\|}$not meaningful here)
\rightarrow Two binnings for signal extraction: exclusive and inclusive with varying lower bound: 100/110/120/130/140 $\rightarrow \infty$

Summary of constraints on sleptons

Search	sleptons
ATLAS: $2 \ell+0 \mathrm{j}$ (ATLAS-CONF-2022-006)	\checkmark
CMS: 2ℓ non-resonant (2012.08600)	\checkmark

Conclusions

The full Run 2 data set allows the exploration of stops and the EWK sector No sign of new physics yet, and the recent results on the muon g-2 anomaly gives hope: all eyes are on the compressed spectra (sleptons, ewkinos)

Combining individual analyses provides multiple opportunities: consider various signal scenarios appearing in multiple places

Both ATLAS and CMS have searched for the production of stop pairs \rightarrow CMS has performed the combination, and both utilised combination to place constraints on (pseudo)scalars that mediate DM production

The latest EWKino Combination results by ATLAS - CMS result is foreseen soon In the meanwhile: new results on EWKinos and sleptons are being published! \rightarrow Searches for SUSY can also inspire new ways to perform SM measurements (see e.g. Fiducial and differential WW cross section measurement by ATLAS)

Combinations of Run 2 searches will define the last words on Run 2 data, and help us to steer the searches for Run 3!

Thanks for your attention!

Recent results from supersymmetry search combinations with the ATLAS and CMS experiments

Jaana Heikkilä (University of Zürich) on behalf of the ATLAS and CMS experiments
ICHEP2022 - July 8 - Bologna

Back-up

Combinations of searches for top pair+DM

A (pseudo)scalar ϕ (a) particle mediates the interaction between SM quarks and a DM candidate X

Event categories: 0/1/2 leptons - require MET and jets (use tagging e.g. for bjets)

ATLAS: Recent extension of the previous OL final state by adding a low MET category (MET decreased from 250 to 160 GeV)
\rightarrow Combine MET (MET $>250 \mathrm{GeV}$) and b-tagged jet triggers
\rightarrow Orthogonality ensured: require MET significance $S<14$ and no large-radius jets
Combination of OL categories with the 1 L and 2 L categories performed by ATLAS and CMS

Event variables

Definitions of some event variables used commonly by ATLAS and CMS

- MET significance S (ATLAS-CONF-2018-038)
- Is the MET from weakly interacting particles, or a result of mismeasurement, resolutions and inefficiencies? \rightarrow Utilise object-based MET significance based on the total variance in the longitudinal direction along MET (all objects) and the correlation factor of the longitudinal and transverse resolutions of all objects

- $M_{T, 2}$ variable generalises M_{T} for symmetric event topologies where two identical particles each decay into a visible and invisible product (1502.04358)

$$
\left(M_{\mathrm{T}}^{(i)}\right)^{2}=\left(m^{\mathrm{vis}(i)}\right)^{2}+m_{\mathrm{X}}^{2}+2\left(E_{\mathrm{T}}^{\mathrm{vis}(i)} E_{\mathrm{T}}^{\mathrm{X}(i)}-\vec{p}_{\mathrm{T}}^{\mathrm{vis}(i)} \cdot \vec{p}_{\mathrm{T}}^{\mathrm{X}(i)}\right)
$$

$$
M_{\mathrm{T} 2}\left(m_{\mathrm{X}}\right)=\min _{\vec{p}_{\mathrm{T}}^{\mathrm{X}(1)}+\vec{p}_{\mathrm{T}}^{(2)}=\vec{p}_{\mathrm{T}}^{\text {miss }}}\left[\max \left(M_{\mathrm{T}}^{(1)}, M_{\mathrm{T}}^{(2)}\right)\right]
$$

A minimization is performed over trial momenta of the undetected particles fulfilling the $p_{T}{ }^{\text {miss }}$ constraint. The unknown mass $m x$ is a free parameter.

The visible parts of each decay chain (leptons) are reconstructed

The invisible parts are unknown! We only reconstruct the total missing transverse energy!

Input analyses for the CMS EWKino Combination
 \section*{compressed}

Two categories; 2 or 3 low pT leptons

- 31 category is new (wrt 2016)
- Require an ISR jet
(enhance the MET from LSP)

Aims to reconstruct mass of Z":
$m l l$ serves as proxy for $\Delta m(N 2, N 1)$
\rightarrow Likelihood fit binned in MET ${ }^{(n o w)}$ \& mll

Targets mass-splittings as low as 5 GeV

Input analyses for the CMS EWKino Combination

$\underline{2106.14246}$ "2l (SS) + $\geq 31 "$

Three or four leptons (up to 2 hadronically decaying taus) or two same-sign (SS) light leptons
Leading' lepton pT>30 GeV (31*)

An exhaustive search that considers up to 13 different leptonic final states

2 (SS): light leptons (compressed regions)
3 and 4l: up to 2 hadr. decaying taus in addition to light leptons

Update since 2016 for the 31 category: Parametric signal extraction to target different models with wildly varying kinematics

Parametric Neural Networks using mass-splitting ($m_{\text {NLSP }}-m_{\text {LSP }}$) as a variable
\rightarrow Target each signal model [for the wino-bino model with WZ final state]
\rightarrow Individual background (and signal) distribution for each dM

Around $\sim 50 \mathrm{GeV}$ in $\mathrm{m}_{\text {NLSP }}$ are gained with the use of the parametric neural network

Machine Learning in CMS stop and multilepton searches

Parametric Neural Network (NN) is used to learn peculiarities of the signal kinematics depending on SUSY parameters and to provide an optimal performance at ~any signal point

- Parametric NN: introduce a generator-level training variable specific to the signal hypotheses
\rightarrow Parameter in background is randomized to follow the training variable's signal distribution (no discrimination directly from parameter)
\rightarrow The NN learns the correlations of the parameter with other training variables, improving performance
- The NN output is provided for each signal hypotheses (data and background is redistributed!)
- Both stop combination (2107.10892) as well as the multilepton search (2106.14246) utilise parametric NN
- Stop: target top corridor where mass splitting between the top squark and the lightest neutralino is close to top quark mass
- Multilepton: Provide sensitivity even for interpolated mass-splitting values that were not used for training

Details	Stop combination $(\underline{2107.10892)}$	Multilepton search (2106.14246)

ATLAS search targeting final states with two leptons, and MET

Recent search from ATLAS targets production of charginos with topology WW (semi-compressed spectra near W boson mass)

ATLAS-CONF-2022-006

- Require 2 leptons (opposite-sign), MET, and no (b) jets
- Main backgrounds SM WW, VZ, Z+jets, ttbar+top from partially data-driven techniques
- Two event categories: same- and different flavour pairs (SF and DF)
- Discriminate signal from background using four BDTs
\rightarrow Each event receives four BDT scores: BDT-signal, BDT-VV, BDT-top, and BDT-other (probability for the event to belong to each class)
- Set of training variables optimised through an iterative procedure out of a larger set of variables
$p_{T}^{\ell_{1}}, p_{T}^{\ell_{2}}, E_{\mathrm{T}}^{\mathrm{miss}}, m_{\mathrm{T} 2}, m_{\ell \ell}, \Delta \phi_{\text {boost }}, \Delta \phi_{p_{\mathrm{T}}^{\mathrm{miss}}, \ell_{1}}, \Delta \phi_{p_{\mathrm{T}}^{\text {miss }}, \ell_{2}}, \cos \theta_{\ell \ell}^{*}$ and $E_{\mathrm{T}}^{\mathrm{miss}}$ significance

- \quad Signal regions defined by BDT score cuts for BDT-signal

