The McMule framework and the search for ALPs at PSI

Andrea Gurgone

for the McMule team

41th International Conference on High Energy Physics Bologna, 6 - 13 July 2022

Looking for the needle muon in the haystack

- The search for charged Lepton Flavour Violation (cLFV) in muon decays is a sensitive tool to test the Standard Model (SM) at the intensity frontier.
- The Paul Scherrer Institute features the **most intense** continuous muon beam in the world: $5\cdot 10^8~\mu^+/s~\longrightarrow~10^{10}~\mu^+/s$ (future goal).
 - $\hookrightarrow\,$ Ideal setting for studying rare muon decays beyond the SM.
- MEG II experiment: $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of $6 \cdot 10^{-14}$ at 90% CL. \rightarrow MEG upper limit: BR $< 4.2 \cdot 10^{-13}$ at 90% CL.
- Mu3e experiment: $\mu^+ \rightarrow e^+e^+e^-$ with a sensitivity of 10^{-15} at 90% CL. \hookrightarrow SINDRUM upper limit: BR $< 1.0 \cdot 10^{-12}$ at 90% CL.
- Can these two experiments search for other cLFV processes? Yes!
- Both are competitive in searching for muon decays involving a light axion-like particle (ALP) arising from the spontaneous symmetry breaking (SSB) of a global model-dependent U(1) symmetry (e.g. axion, majoron, familon etc).

$$\hookrightarrow \mu \to e X \gamma, \ \mu \to e (X \to \gamma \gamma), \ \mu \to e X, \ \mu \to e (X \to e e)$$
MEG II
Mu3e

Search for $\mu \to e X$ with MEG II and Mu3e

- This talk: focus on $\mu^+ \to e^+ X$ (simple but elusive!) \hookrightarrow TWIST limit: BR $< 5.8 \cdot 10^{-5}$ for $m_X < 10$ MeV.
- The signature is a **monochromatic** e^+ close to the energy endpoint of the $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ background:

$$E_e^{max} = rac{m_\mu}{2} \left[1 + \left(rac{m_e}{m_\mu}
ight)^2
ight] pprox 52.83 \; ext{MeV}$$

- The higher-order QED corrections for $E_e o E_e^{max}$ are enhanced by the emission of **soft photons**.
- The background theory error is large at the endpoint.

 → It covers the signal for low BRs for any experiment.
- The background theory error is a peak at the endpoint.
- \hookrightarrow It resembles a false signal, leading to possible biases.
- This search requires extremely accurate theoretical predictions, both for $\mu \to e \, X$ and $\mu \to e \, \nu \, \bar{\nu}$.

Signal energy:
$$E_e^X(m_X) = \frac{m_\mu^2 + m_e^2 - m_X^2}{2m_\mu}$$

We need a Mule to do the hard work

- The new generation of precision experiments with leptons needs extremely accurate predictions for the SM processes, usually at the next-to-next-leading order (NNLO).
 - \hookrightarrow McMule \longrightarrow Monte Carlo for MUons and other LEptons.

- For an implemented process the output is the distribution $d^n \sigma / dx_1 \dots dx_n$ for any set of IR-safe observables $x_1 \dots x_n$ that can be constrained with any cut.
 - → Can reproduce detector acceptances, analysis cuts, trigger preselections etc.
- An inclusive e^+ event from a **polarised** μ^+ decay is fully characterised by

$$\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}E_{e}\,\mathrm{d}\cos\theta_{e}} = \frac{G_{F}^{2}\,m_{\mu}^{5}}{192\,\pi^{3}}\left[F\left(E_{e}\right) + P_{\mu}\cos\theta_{e}\,G\left(E_{e}\right)\right]$$

 $P_{\mu} \longrightarrow \text{Muon polarisation rate (85\% for MEG II and Mu3e)}.$

 $F(E_e) \longrightarrow \text{Contribution independent on } \mu^+ \text{ polarisation.}$

 $G(E_e) \longrightarrow Contribution dependent on <math>\mu^+$ polarisation.

_	'	
Mc	Mul	E

Process	Precision	
$\mu ightarrow e u ar{ u}$	NNLO†	
$\mu o { m e} u ar{ u} \gamma$	NLO†	
$\mu o e u ar{ u}$ ee	NLO†	
μo e X	NLO†	
ee o ee	NNLO	
ee ightarrow uar u	NNLO	
$ee o\gamma\gamma$	NNLO *	
$ee o\mu\mu$	NNLO*	
e p o e p	NNLO	
$\mu {f p} ightarrow \mu {f p}$	NNLO	
μ e $ ightarrow$ μ e	NNLO*	

† τ decays as well * Work in progress

Signal $\mu^+ \rightarrow e^+ X$ at NLO

$$\mathcal{L}_{\mathrm{X}} = rac{1}{\Lambda} \left(\partial_{
ho} \, \mathrm{X} \,
ight) ar{\psi}_{\mu} \left(\gamma^{
ho} \, \mathrm{g}_{\mathrm{V}} + \gamma^{
ho} \gamma^{5} \, \mathrm{g}_{\mathtt{A}}
ight) \psi_{\mathrm{e}} + \mathcal{L}_{\mathrm{QED}}$$

$$g_V = -g_A \longrightarrow V-A$$
 coupling (left-handed, like SM)

$$g_V = +g_A \longrightarrow V+A$$
 coupling (right-handed, unlike SM)

 $g_A = 0 \longrightarrow V$ coupling (no muon polarisation effect)

 $\mathbf{g}_V = \mathbf{0} \ \longrightarrow \ A$ coupling (no muon polarisation effect)

Background $\mu^+ o e^+ \nu_e \bar{\nu}_\mu$ at NNLO+Logs

- LO computed with the (dear old) Fermi theory.
- Leading EW correction: $G_F o G_F \, (1 + 3 m_\mu^2 \, / \, 5 m_W^2)$.
- Full **QED** corrections at NNLO with $m_e \neq 0$.
- Inclusion of collinear logarithms $\log{(m_e/m_\mu)}$ up to $\mathcal{O}(\alpha^5)$ with next-to-leading logarithm (NLL) accuracy.
- Resummation of soft logarithms $\log (1 2E_e/m_\mu)$ with a NNLL accuracy \rightarrow YFS exponentiation.
- (Hadronic) Vacuum Polarisation effects at $\mathcal{O}(\alpha^2)$.
- The final theory error on positron spectrum is $\sim 10^{-5}$.

Signal vs. Background in MEG II

$$\mathcal{F}_e = (\mathcal{E}_e \times \mathcal{A}_e) \otimes \mathcal{S}_e \longrightarrow$$

 \mathcal{F}_e : Expected energy spectrum, \mathcal{A}_e : Positron energy acceptance, \mathcal{E}_e : Theoretical energy spectrum, \mathcal{S}_e : Positron energy resolution.

Preliminary sensitivity for MEG II

Sensitivity on $\mu o e\,X$ at 90% CL for MEG II, assuming different offsets on E_e calibration \longrightarrow Signal biases for $m_X \simeq 0$

Preliminary sensitivity for Mu3e

Sensitivity on $\mu \to e X$ at 90% CL for Mu3e, assuming different numbers of e^+ events and ALP masses and couplings.

Conclusion and outlook

- The search for cLFV ALPs in muon decays such as $\mu \to e X$, $\mu \to e X \gamma$, $\mu \to e (X \to \gamma \gamma)$, $\mu \to e (X \to e e)$ is an excellent opportunity for MEG II and Mu3e to extend their physics programme beyond their main channels.
- The theoretical challenges for the very elusive $\mu \to e \, X$ have been successfully tackled with McMule, leading to a new state-of-the-art computation of $\mu \to e \, \nu \, \bar{\nu}$ for polarised muons.
 - → P. Banerjee et al., High-precision muon decay predictions for ALP searches (in preparation, 2022).
- The new predictions are under implementation in simulation frameworks for more detailed experimental studies.
 - → A. Gurgone et al., Improved muon decay simulation with McMule and Geant4 (in preparation, 2022).
- McMule aims to provide accurate theoretical predictions for high-precision experiments with leptons.
 - $\leftarrow \text{ Collaboration with MEG II } (\mu \to e \nu \bar{\nu}, \ \mu \to e \nu \bar{\nu} \gamma, \ \mu \to e \nu \bar{\nu} \gamma \gamma), \ \text{Mu3e} \ (\mu \to e \nu \bar{\nu}, \ \mu \to e \nu \bar{\nu} e e), \\ \text{MUonE } (\mu e \to \mu e), \ \text{MUSE } (\mu p \to \mu p), \ \text{PRad } (e p \to e p, \ e e \to e e), \ \text{P2 } (e p \to e p), \\ \text{PADME } (e e \to \gamma \gamma), \ \text{Luminosity at future } \ell\text{-colliders } (e e \to e e, \ e e \to \gamma \gamma) \dots$
- The current target is the NNLO accuracy, but the first N³LO calculations are foreseen in the near future, as well as the implementation of a QED parton shower matched to the fixed-order contributions.
- As everyone knows, once a Mule has made up its mind, it is difficult to stop...

The McMule team, a.k.a. the "Mules"

P. Banerjee¹, A. Coutinho², T. Engel^{2,3}, A. Gurgone^{4,5}, F. Hagelstein^{6,2}, S. Kollatzsch⁷, L. Naterop³, A. Proust⁸, M. Rocco², N. Schalch⁹, V. Sharkovska^{2,3}, A. Signer^{2,3}, Y. Ulrich¹⁰

 1 Zhejiang University, 2 Paul Scherrer Institut, 3 University of Zurich, 4 University of Pavia, 5 INFN Pavia, 6 University of Mainz, 7 TU Dresden, 8 ENS Lyon, 9 University of Bern, 10 IPPP Durham

Visit our website: https://mule-tools.gitlab.io Contact: andrea.gurgone01@ateneopv.it Backup

$BR(\mu \rightarrow e X) \longleftrightarrow \Lambda \longleftrightarrow C_L, C_R$

$$\mathcal{L}_{\mathrm{X}} = \frac{1}{\Lambda} \left(\partial_{\rho} \, \mathrm{X} \right) \bar{\psi}_{\mu} \left(\gamma^{\rho} \, \mathrm{g}_{\mathrm{V}} + \gamma^{\rho} \gamma^{5} \, \mathrm{g}_{\mathrm{A}} \right) \psi_{\mathrm{e}} = \mathrm{X} \, \bar{\psi}_{\mu} \left(\mathrm{C}_{\mathrm{L}} \mathrm{P}_{\mathrm{L}} + \mathrm{C}_{\mathrm{R}} \mathrm{P}_{\mathrm{R}} \right) \psi_{\mathrm{e}}$$

$${
m C_L} \equiv {
m g_V} rac{{
m i} \left(m_e - m_\mu
ight)}{\Lambda} + {
m g_A} rac{{
m i} \left(m_e + m_\mu
ight)}{\Lambda} \qquad {
m C_R} \equiv {
m g_V} rac{{
m i} \left(m_e - m_\mu
ight)}{\Lambda} - {
m g_A} rac{{
m i} \left(m_e + m_\mu
ight)}{\Lambda}$$

Theorist's toy analysis for MEG II and Mu3e

Simplified model for MEG II and Mu3e positron trackers:

$$\mathcal{F}_{e}(E_{e}) = \int dE'_{e} \left[\mathcal{E}_{e}(E'_{e}) \times \mathcal{A}_{e}(E'_{e}) \times \mathcal{S}_{e}(E_{e} - E'_{e}) \right]$$
$$\equiv \left[\mathcal{E}_{e} \times \mathcal{A}_{e} \right] \otimes \mathcal{S}_{e}(E_{e})$$

 \mathcal{F}_e : Expected e^+ energy spectrum

 \mathcal{E}_e : Theoretical e^+ energy spectrum

 \mathcal{A}_e : Positron energy acceptance function

 S_e : Positron energy **resolution** function

MEG II acceptance: $|\cos \theta_e| < 0.35$, $E_e \gtrsim 45$ MeV

Mu3e acceptance:
$$|\cos heta_e| <$$
 0.8, $E_e \gtrsim 10~\text{MeV}$

$$S_e\left(E_e; \sigma_e\right) = rac{1}{\sigma_e\sqrt{2\pi}} \exp\left[-rac{1}{2}\left(rac{E_e}{\sigma_e}
ight)^2
ight]$$

MEG II resolution: $\sigma_e \simeq 100$ keV at $E_e = 52.83$ MeV Mu3e resolution: $\sigma_e \simeq 300$ keV (offline), 2 MeV (online)

(No experiments were harmed in making this analysis)

ALP mass acceptance in MEG II and Mu3e

Signal energy at LO:
$$E_{
m e}^X(m_X)=rac{m_{\mu}^2+m_{
m e}^2-m_X^2}{2m_{\mu}}$$

Signal vs. Background in Mu3e

$$\mathcal{F}_e = (\mathcal{E}_e \times \mathcal{A}_e) \otimes \mathcal{S}_e \longrightarrow$$

 \mathcal{F}_e : Expected energy spectrum, \mathcal{A}_e : Positron energy acceptance, \mathcal{E}_e : Theoretical energy spectrum, \mathcal{S}_e : Positron energy resolution.

Preliminary sensitivity for MEG II without systematic effects

Sensitivity on $\mu \to e X$ at 90% CL for MEG II, assuming different numbers of e^+ events and ALP masses and couplings.

The MEG II experiment at PSI

The Mu3e experiment at PSI

