

Design and Construction of hundred-ton liquid neutrino detector at CJPL II Benda Xu <orv@tsinghua.edu.cn> on behalf of JNE Collaboration

Neutrino as a probe into the Earth and the Sun

- \blacktriangleright ²³⁸U, ²³²Th and ⁴⁰K in the Earth produce heat by β decays with geo-neutrinos.
- ► U and Th enrich in the crust by chemical properties, thus the tibet plateau is the biggest geo-neutrino source on the Earth.
- Get away from commercial nuclear reactor neutrinos.

- ► The CNO-cycle is sub-dominant in the Sun, but sensitive to the primodial elements heavier than He (*metals* in star evolution).
- ► Flux of CNO-neutrinos is the key to measure the solar metalicity.
- Go deep underground to shield against cosmogenic backgrounds.

MeV-neutrino physics at the China JinPing underground Laboratory

Deepest vertical overburden of 2400 m, largest laboratory volume. Lowest cosmogenic & reactor backgrounds, see online poster by Bin Zhang.

Department of Engineering Physics & Center for High Energy Physics, Tsinghua University, Beijing, China

- Analog-to-digital converter chip from JUNO for full PMT waveform readout, revised with much lower chip power consumption of $0.35 \,\mathrm{W/channel}$.

- ▶ 4 channels integrated on one chip, 8-channel model under development. Scheduled to tapeout with 65nm MOSFET node. Frontend electronic board prototype ready.

analog input from PMTs

FPGA: Field Programmable Gate Array. SoC: System-on-chip. SPI: Serial Peripheral Interface. MOSFET: metal-oxide-semiconductor field-effect transistor. LVDS: Low-Voltage Differential Signaling.

- Strings pulling upwards and downwards. Allowance of up to 20% density difference between inner and outer liquid media. Pure water for ⁸B solar neutrino with low cosmogenics.
- multiple possible detecter-target media upgrades without refurbishment:
 - ▶ LiCl-water solution, see
 - arXiv:2203.01860.
 - Slow liquid scintillator with Cherenkov readout, see arXiv:1708.07781,
 - 1607.01671, 1511.09339.
 - Liquid scintillator doped with ⁷¹Ga, see arXiv:2002.11971.
- It prototype study of mechanics and radioisotops at arXiv:1703.01478 and *online* poster by Yiyang Wu.

⁴⁰K contaminations.

PMT glass bulbs

Cherenkov light with directional info.

Cherenkov detector

	$\times 10^{3}$ <i>a</i> (no Cr	ierenr
1100	6	
	5	
	4	
	3	
	2	
	1	•
		12

Summary and Outlook

上ICHEP 2022 BOLOGNA

3 High-quantum-efficiency low-background PMT

ø20 cm microchannel plate (MCP) PMT design goal: balance of timing ($\sigma_{\rm TT}$ < 1.5 ns) and detection efficiency (~30 %). ► Material and manufacturing process screening for ²³⁸U, ²³²Th and

MCP-PMT after potting

Waveform analysis suitable to the characterstics of new PMT. ▷ GPU acceleration in *online poster Yuyi Wang*.

CJPL is ideal for MeV neutrino physics, for which JNE collaboration constructs hundred-ton neutrino detector by 2026. Gravity-buoyancy tolerant acrylic vessel. 2. New 12-bit 1Gsps waveform digitizer. Much improved \emptyset 20 cm MCP-PMT. Slow liquid scintillator with Cherenkov readout.