CALICE Imaging Calorimeters: A Review and New Results

Adrián Irles* *AITANA group at IFIC – CSIC/UV on behalf of the CALICE Collaboration

BOLOGNA ICHEP 2022 SOLOGNA International Conference on High Energy Physics Bologna (Italy) Bologna (Italy)

Particle Flow Algorithms

Calorimetry requiremetns (some)

Ultracompactness: small Molière radius of calorimeters to minimize shower overlap Extreme high granularity

Concept

- Base the measurement on the subsystem with best resolution for a given particle type (and energy)
- Separation of signals by charge and neutral particles in the calorimeters
- **Maximal exploitation** of precise **tracking** measurement
 - "no" material in front of calorimeters
- ► Single particle separation

(some) Challenges

- Complicated topology by (hadronic) showers
- Overlap between showers compromises correct assignment of calorimeter hits

-> Confusion term

• Need to minimize this term as much as possible

Particle Flow Calorimetry R&D

Mainly organised within the

Collaboration

More than 300 physicists/engineers from ~60 institutes and 19 countries coming from the 4 regions (Africa, America, Asia and Europe)

All projects of current and future high energy colliders propose highly granular calorimeters

Particle Flow Calorimetry TODAY

7:00	CALICE Imaging Calorimeters: A Review and New Results	Adrian Irles			
	Bologna, Italy	17:00 - 17:15			
	Hadronic Energy reconstruction in highly granular calorimeters	Imad Laktineh			
	Bologna, Italy	17:15 - 17:30			
	Advanced reconstruction and simulation techniques for highly granular calorimeters	Fabricio Jimenez Morales			
	Bologna, Italy	17:30 - 17:45			
		Starting works			

CALICE – History and steps

Physics Prototypes

2003 - 2012

- Proof of principle of PFA calorimeters
- Large scale combined beam tests

Irles A., 8th July. 2022

• Validation of G4 Physics lists

Technological Prototypes

2010 - ...

Detectors (e.g. LC's)

Engineering challenges

This talk

 Goal: ~10⁸ calorimeter cells to compare: ATLAS LAr ~ 10⁵ cells CMS HGCAL ~10⁷ cells

Technological premises

Highly integrated (very) front end electronics

Miniaturisation of r/o devices

Size 7.5 mm x 8.7 mm,

64 channels

- Analogue measurement
- On-chip self-triggering
- Data buffering
- Digitisation

 ... all within one ASIC

Large surface detectors

Si Wafer

RPC layers

- Small scinitllating tiles
- (Low noise) SiPMs

Power pulsed electronics

to reduce power consumption... Compactness –> no space left for active cooling systems

Many things that look familiar to you today were/are pioneered/driven by CALICE

IC 🖍

Technological solutions for (almost) final detector

SiW ECAL

Analogue Scintillator HCAL and ECAL

Mylar layer (50μ) PCB interconnect Readout pads (1cm x 1cm) PCB (1.2mm) PCB interconnect (1cm x 1cm) PCB support (FR4 or polycarbonate) (Hardroc2, 1.4mm) Gas gap Gas gap Mylar (175μ) Ceramic ball spacer (1.2mm) Gass fiber frame (1.2mm) Anode glass (0.7mm)

Semi Digital HCAL

Active area: silicon PiN Diodes Typical segmentation: 0.5x0.5 cm² Scintillator tiles/strips + SiPM Typical segmentation: 3x3cm² Gas RPCs Typical segmentation: 1x1cm²

Integrated front end electronics

No drawback for precision measurements NIM A 654 (2011) 97

Self triggered readout. with sub-MIP thresholds (high S/N ~ 10) and >99% hit efficiency detection

+ resistive coating

CALICE Sc-ECAL

A 32-layer prototype is under construction in China. Option for CEPC and ILC electromagnetic calorimeters.

45×5×2mm³ scintillator strips 2.45×1.9×0.85 mm³ SiPM

-50

-100100

- Technological prototype: full layer
- Joint R&D with CEPC-ECAL group
- Scintillator strip $(45 \times 5 \times 2 \text{ mm}^3)$ with SiPM
- 32 layers, $\sim 23.4 X_0$
- 210ch /EBU

Strips could be read at both ends of longer strips to increase accuracy and provide redundancy.

Cosmic stand

- No beam test performed yet due to pandemic
 - Sc-ECAL/CEPC-AHCAL combined test beam at CERN SPS in October 2022
- Long cosmic ray run (~3 month)
 - MIP calibration
 - Stability test

HEP 2022

BOLOGNA

- Performance study
- Detection efficiency, position resolution
- Study with cosmic-ray induced shower

Irles A., 8th July. 2022

Prototype rotated by 90° for cosmic-ray test

IFI

9

CALICE SIW-ECAL

- new technological prototype with tungsten absorber
 - Si pads: 5 × 5 mm² (ILD design)
 - 15 modules layers × 1024 channels/layer ≈ 15000 cells (~as LHC-exp)
 - TB at DESY and CERN 2022 (with AHCAL)
- All components designed to fit the requirements of a Lepton Collider Detector
 - Ultra compact digital readout systems
 - Same granularity as ILD

Very dense PCBs aka FEV with 1024 readout channels (with digital, analogue, clock signals) in a 18x18

FEV10-12

BOLOGNA

Highly compact objects with minimal space for the components needed to assure the integrity of the signals & a proper power management

CALICE – Analogue HCAL

38 layers 72×72×2.5 cm³ / layer 22,000 tiles

SiPM under the tiles for better uniformity and light collection

3x3cm² tiles

each cell also provides time information with ~1ns resolution

Common beam test CERN SPS 06/2022

- Master Clock (from CCC AHCAL). Busy signals. Common Acq-Windows with a fixed Offset in clock.
- System controlled by EUDAQ 2

IEP 2022

OLOGNA

- Online event building and EUDAQ monitoring tools.
- Common tools for analysis are work in progress.

Muons (150GeV), electrons (10-100GeV) and pions (10-150GeV)

Semi Digital-HCAL

$2 \text{ m}^2 \text{ RPC}$ assembled

- ▶ 48 layers × 28 mm, also made of glass RPC.
 - 96 × 96 channels per layer, i.e.
 - ~440000 1×1 cm² readout channels.
- Semi digital readout
 - 3 tunable energy thresholds 0.1MIP -5 MIP 15 MIP
 - thresholds coded into 2 bits → pads with few, many or lots of hits.
- Optimize hadronic shower reconstruction via choice of thresholds.
- Better linearity response, improved energy resolution.

Irles A., 8th July. 2022

Semi Digital-HCAL

- Circular colliders (CEPC) expect power consumption 100-200 times larger than ILC
 - Active cooling needed (water cooling using cooper pipes)
 - and/or new readout schemes as woven strips (Work in progress)
- Investigating timing using MultiGAP RPC
 - 4-5 gaps of 250 µm each can provide 100 ps time resolution

Irles A., 8th July. 2022

Realistic detector dimensions: long layers

SiW-ECAL

Active area: silicon PiN Diodes Typical segmentation: 0.5x0.5 cm²

Analogue-HCAL and Sc-ECAL

Scintillator tiles/strips + SiPM Typical segmentation: 3x3cm²

Semi-digital HCAL

Gas RPCs Typical segmentation: 1x1cm²

- Realistic detector dimensions
 - Structures of up to 3m in length (more than 10000 cells)
 - With compact external components
- Challenge for the power pulsing techniques (for the power consumption management)

Realistic detector dimensions: ultra compact layers

Current detector interface card - AHCAL

Current detector interface card and thin detection unit – SiW ECAL

Current detector interface card - SDHCAL

Irles A., 8th July. 2022

- "Dead space free" granular calorimeters put tight demands on compactness
- Current developments within CALICE meet these requirements
 - Unique successes in worldwide detector R&D
- Can be applied/adapted wherever compactness is mandatory
- Components will/did already go through scrutiny phase in beam tests

Summary and more

We are in a very exciting moment for the PFA calorimeters prototyping

- High level integration (meeting the very tight technical requirements of the future colliders)
- Discussed projects are near (or already) in the phase of building large scale (~m³) technological prototypes.
- Proven stable operation of prototypes in beam test: **common test beams campaigns restarted in 2022**

Looking forward for a lepton collider soon!

Many other topics could not be covered in this talk but you may find some extra material in the back up slides

- **CALICE R&D inspired CMS high granularity solution HGCAL**. Common testbeams with the AHCAL prototype.
- **Further spin-offs:** LUXE, ALICE FOCAL, DUNE ND, Belle II Claws
- New ideas/technologies being explored
 - high precision (ps) timing calorimeters?
 - New sensors ideas (MAPS, LGADs, etc)
 - Dual readout & high granularity

Original target of the CALICE calorimeters were the linear colliders but the generic concept is also applicable to circular colliders

Back-up slides

Particle Flow Algorithms

Irles A., 8th July. 2022

Concept

- Base the measurement on the subsystem with best resolution for a given particle type (and energy)
- Separation of signals by charge and neutral particles in the calorimeters
- Single particle separation

Challenges

- Complicated topology by (hadronic) showers
- Overlap between showers compromises correct assignment of calorimeter hits

-> Confusion term

• Need to minimize this term as much as possible

Requirements for PFA oriented detectors

Jet energy measurement by measurement of individual particles

Maximal exploitation of precise tracking measurement

- large radius and length
 - to separate the particles
- large magnetic field
 - To increase separation of neutral/charged particles at calorimeters
 - to suppress very large, low-momentum beam-related backgrounds"

"no" material in front of calorimeters

 Low material budget on the tracker + stay inside coil + no active cooling systems (linear colliders, circular colliders impact to be understood)

Ultracompactness: small Molière radius of calorimeters

- to minimize shower overlap
- high granularity of calorimeters
- to separate overlapping showers
- And fast timing calorimeters

New Kids in the Block

A 5th dimension: time

► O(ns) with "standard" Si/Sc sensors and integrated readout electronics (to separate slow and fast shower components)

► O(50ps) with ultra-fast silicon sensors: Inverse APD, LGAD, etc

► O(20ps) with GRPC and dedicated electronics (DETIDOC) Inverse APD as LGAD? Developped for CMS muon upgrade

DECAL/MAPS

Ultra granular calorimeter under consideration for ALICE (and also SiD-ILC, FCC-hh...)

TestBeams in 2019-20-21

HEP 2022

BOLOGNA

 24 layers, 48
 ALPIDE sensors, 24M pixels

Irles A., 8th July. 2022

Dual + PFA calorimetry

Theory says, need comparatively small amplification

- ADRIANO2 (REDTOP) merges the benefits of a dual-readout and of a CALICE-type calorimeter,
 - Plastic scintillator + heavy dense glass (only senstite to charged particles fast detector)
 - Fast detectors (80ps)

New PCB – FEV2.x

LLR, IJCLab, LPNHE, OMEGA

Improved Layout

• Better shielding of AVDD and AVDD PA plans and minimisation of cross-talk between inputs and digital signals.

Power Pulsing Mode: new philosophy

- limiting the current through the Slab (current limiter present on the SL Board) to:
 - avoid driving high currents through the connectors and makes the current peaks local around the SKIROCs chips
 - avoid voltage drop along the slab
 - ensure temperature uniformity
- We add large capacitors with low ESR for **local** energy storage (around each SKIROC chip)
- Generate local power supply with LDO (Low Drop Out) to avod voltage variations

Clean clock distribution all over the slab

- for Slow Control and Readout Clocks
- Parallel configuration and readout over 2 partitions.
- Driving high voltage up to 350V for 750µm wafer (via the ASU connectors)
 - Adding a filter for each wafer HV and limit the current in case of wafer failure

Jet energy resolution

Irles A., 8th July. 2022

$$\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had.}^2 + \sigma_{elm.}^2 + \sigma_{Confusion}^2}$$

Lepton Collider goal is around dE_{jet}/E_{jet} - 3-4% (e.g. 2x better than ALEPH)

In a "typical jet" the energy is carried by

- ► Charged particles (e[±], h[±], μ[±]): 65%
- Most precise measurement by Tracker

Photons: 25%

Resolution (GeV/c)

TPC Momentum

Measurement by Electromagnetic Calorimeter (ECAL)

Neutral Hadrons: 10%

Measurement by Hadronic Calorimeter HCAL and ECAL

Particle Flow Algorithm

Choose the best information in our detector

performance at MIP level

MIP Detection efficiency ~100%

PFA requires small pixel size, large segmentation and pattern at low energy:
a) Access to small signals -> Low self-trigger thresholds (with zero supression and high S/N ~10 at MIP)
b) Tracking in calorimeters -> High MIP detection efficiency ✓

Irles A., 8th July. 2022

First step towards transforming SDHCAL into T-SDHCAL

New and easy way of construction MRPC Using thin spacers made of mylar+double face

Large timing PCB

- Board with 8 (could be extended to 12) Petircoc2B ASICs .
- Pads 2cm x 2cm, 256 channels .
- Local FPGA (Xilinx Spartan-6 TQFP) embedded on board .

Bttom view

First step towards transforming SDHCAL into T-SDHCAL

- Front-End Electronics for MRPC readout with high timing resolution
- The system includes a front-end board (FEB), a detector interface card (DIF) and a data acquisition system(DAQ) based on ZCU102.

Petiroc2A Evaluation Board

ICHEP 2022 BOLOGNA

Irles A., 8th July. 2022

I. Laktineh

Spinoffs of CALICE R&D I: CMS HGCAL

ICHEP 2022 BOLOGNA Irles A., 8th July. 2022

Spinoffs of CALICE R&D II

FOCAL MAPS ECAL:

Ultrahigh granular calorimeter is under consideration for ALICE (and also SiD-ILC, FCC-hh...)

Numbers for FOCAL assuming $\approx 1m^2$ detector surface

	LG	HG
pixel/pad size	≈ 1 cm²	≈ 30x30 μm²
total # pixels/pads	≈ 2.5 x 10 ⁵	≈ 2.5 x 10 ⁹
readout channels	\approx 5 x 10 ⁴	≈ 2 x 10 ⁶

- ▶ TestBeam in Nov2019 & Feb2020
 - 24 layers,
 - 48 ALPIDE sensors,
 - 24M pixels

- Electron/positron, E = 1.0 5.8 GeV
- ▶ H6 test beam SPS (Sept./Oct. 2021)
 - Mixed beam, E = 20 80 GeV

New ALPIDE CMOS sensor based 3cm×3cm area 24 layer stack

- · Recent Testbeams with
- MIMOSA for HG
- Prototype with ALPIDE under construction

DESY

Spinoffs of CALICE R&D III

Irles A., 8th July. 2022

- SiPM-on-Tile and scintillator strips as active material for DUNE Near Detector
- Similar requirements on compactness as lepton collider detectors
 - Study of adaptation of CALICE technologies ongoing
 - Including first discussions on engineering level

Energy leakage of electromagnetic particles estimated by analyzing the patterns in total energy deposition in each layer using neural networks.

(18+6) vs (60+0) GEANT4 models, with:

- energies range: 20 300 GeV •
- incidence angles $\theta = 0^{\circ} 45^{\circ}$
- azymuthal angles $\phi = 0^\circ 30^\circ$

Design performance possible with 16+8 configuration:

F.Corriveau (IPP/McGill) - AWLC 2020 - Particle Flow Calorimetry

15

\$(°)

IFIC INSTITUT DE FÍSICA

10

30

Irles A., 8th July. 2022

2020.10.21

HEP 2022

BOLOGNA

SiW ECAL/SDHCAL (2018)

CALICE meets CMS Common beam tests since 2017

- Common beam tests benefit from common approach within CALICE
- But also from wider networking activities such as EUDAQ2 of AIDA2020
- More common beam tests to come after CERN shutdown

FCC Week - November 2020

CE-E

Some challenges at Circular Colliders

Power pulsing at LC <-> No power pulsing at Circular Colliders => Strong heat dissipation

CEPC Xtal Calo Workshop – July 2020

33

Dual & high granularity (and timing) calorimetry

- See Cristal Calorimetry talks from yesterday.
- Another example: ADRIANO2 calorimeter (REDTOP detector)

ADRIANO2 merges the benefits of a dual-readout and of a CALICE-type calorimeter, creating the base for a new generation of high-performance detectors.

- Active mat.1: Plastic scintillator
- Active mat.2: heavy dense glass (only sensible to charged particles via Cherenkov rad). Fast detectors !
- Another example: ADRIANO2 detector

The next decade: ps timing in calorimeters

Pioneered by LHC Experiments, timing detectors are/will be also under scrutiny by CALICE Groups Inverse APD as LGAD?

Under development: GRPC with PETIROC

- < 20ps time jitter</p>
- Developed for CMS Muon upgrade

Theory says, need comparatively small amplification

- Shot noise may be limiting factor
- Expect interesting comparison between inverse APD and LGAD as e.g. used by ATLAS
- Not that Members of CALICE are also members of ATLAS-HGTD

Expect interesting results on timing detectors from CALICE in coming years

R&D on materials

Prototype of Crystal calorimeter

Irles A., 8th July. 2022

ICHEP 2022 BOLOGNA

Megatiles for scintillator based calorimeters

- Tests in lab ...
- ... but also in beam tests
 - Megatiles and LG-Calo in 2019

CEPC Xtal Calo Workshop – July 2020

23

Power pulsing

- N.B. Final numbers may vary
- Electronics switched on during > ~1ms of ILC bunch train and data acquisition
- Bias currents shut down between bunch trains

Mastering of technology is essential for operation of LC detectors

Irles A., 8th July. 2022

