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| Particle Flow Algorithms 2

Concept

P Base the measurement on the subsystem with best
resolution for a given particle type (and energy)

P Separation of signals by charge and neutral particles in
the calorimeters

P Maximal exploitation of precise tracking measurement

pion

® ‘“‘no” material in front of calorimeters

P Single particle separation
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’ // / muon
- //,%//{/4/;, (some) Challenges
electron ISR /f/ 77// ‘ Ly
Vs P Complicated topology by (hadronic) showers

p Overlap between showers compromises correct

. . assignment of calorimeter hits
Calorimetry requiremetns (some)

Ultracompactness: small Moliére radius of calorimeters —> Confusion term
to minimize shower overlap . . ,
Extreme high granularity ® Need to minimize this term as much as possible

e Aol Iries A, 87 July. 2022 CALI@ IF 1C A




| Particle Flow Calorimetry R&D

Mainly organised within the CAI_. ee Collaboration

PFA Calorimeter I
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d'J?T More than 300 physicists/engineers from
LU ~60 institutes and 19 countries coming
from the 4 regions (Africa, America, Asia

and Europe)
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All projects of current and future high energy colliders propose highly granular calorimeters
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| Particle Flow Calorimetry TODAY

17:00 CALICE Imaging Calorimeters: A Review and New Results Adrian Iries
Bologna, ltaly 17:00-17:15
Hadronic Energy reconstruction in highly granular calorimeters Imad Laktineh
Bologna, ltaly 17:15-17.30
Advanced reconstruction and simulation techniques for highly granular calorimeters Fabricio Jimenez Morales
Bologna, ltaly 17:30 - 17:45
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| CALICE - History and steps

Physics Prototypes Technological Prototypes Detectors (e.g. LC’s)

2003 - 2012 2010 - ...

® Proof of principle of PFA e Goal: ~108 calorimeter cells

calorimeters Engineering
* Large scale combined beam tests Challenges ;‘\JTCIJ_T;DE;G- 5
* Validation of G4 Physics lists r~10° cells
This talk CMS HGCAL ~107 cells

CCCCCCCCCCC
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| Technological premises 6

Highly integrated (very) front end

: o o ] Large surface detectors
electronics Miniaturisation of r/o devices

e.g. SKIROC (for SiW Ecal) Si Wafer

* Small scinitllating tiles

Size 7.5 mm x 8.7 mm, + (Low noise) SiPMs

64 channels

" Analogue measurement Power pulsed electronics
* On-chip self-triggering

- Data buffering to reduce power consumption...
- Digitisation Compactness —> no space left for active cooling systems

... all within one ASIC

Many things that look familiar to you today were/are pioneered/driven by CALICE
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|Technological solutions for (almost) final detector

Analogue Scintillator HCAL
and ECAL

SPIROC2E, Tile, 3mm thick Polyimide Foil
BGA372 Robust Interface DIF, CALIB and POWER
uw L/ED / Flexlead ~Connegtor mezzanine cards

SiW ECAL

W Heat shield: 100+400 pm
(copper)

\
non- —e_=T7.5]Max
absorber
material:

o
0.5

Centrél Interface Board-
CIB (1.7mm thick)

CIB socket (~2.4mm)

R
Cooling Pipe \
Cassette Bottom Plate
(Steel, 0.5mm thick)

Reflector Foils,

indiv. tile
wrapping  HBU, 0.75mm thick

SiPM, SMD

Scintillator tiles/strips + SiPM
Typical segmentation: 3x3cm?

Active area: silicon PiN Diodes
Typical segmentation: 0.5x0.5 cm?

Integrated front end electronics
No drawback for precision measurements NIM A 654 (2011) 97

Self triggered readout.

with sub-MIP thresholds (high S/N ~ 10)

and >99% hit efficiency detection

S ICHEP 2022 | e
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Semi Digital HCAL

Readout pads
Mylaciapercan. PCB interconnect (1cm x 1cm)
PCB (1.2mm) ," Readout ASIC

H (Hardroc2, 1.4mm)

[.CB support (FR4 or polycarbonate)

\ Cathode glass (1.1mm)

Ceramic ball spacer (1.2mm) *+ resistive coating
Anode glass (0.7mm)

+ resistive coating

"Mylar (175p)

Glass fiber frame (1.2mm)

Gas RPCs
Typical segmentation: 1x1cm?
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| CALICE Sc-ECAL

A 32-layer prototype is under construction in China.
Option for CEPC and ILC electromagnetic calorimeters.

CAu@

- MPPC arréy :
on EBU

eTechnological brototype: full layer
= Joint R&D with CEPC-ECAL group

« Scintillator strip (45 % 5 x 2 mm?) with SiPM
32 layers, ~23.4X,
«210ch /EBU

45x5x2mm? scintillator strips L
2.45%1.9%x0.85 mm? SiPM Strip assembly (144

strips) for EBU

Tracking reconstruction

Strips could be read at both ends of longer strips e
to increase accuracy and provide redundancy.

- ICHEP 2022 Irles A, 8" July. 2022




I o Prototype rotated by 90° for cosmic-ray test
Cosmic stand .
|

| Cosmic ray tracks CR event display
MIP response S BE/ ;_
» No beam test performed yet E g T =
due to pandemic 3 [P Z
® Sc-ECAL/CEPC-AHCAL —
combined test beam at R T S——
CERN SPS in October 2022 . va T
> Long CosmiC ray run (~3 CR event display with hit reconstruction
month) Cosmic ray induced showers A Fi—
® MIP calibration T 4 T H
* Stability test i R 3
® Performance study g cC e
® Detection efficiency, T e W0
position resolution — _
Longitudinal profile Energy sum
® Study with cosmic-ray o
induced shower :

- ICHEP 2022
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| CALICE SiW-ECAL

P new technological prototype with tungsten absorber
® Sipads:5x5mm?2(ILD design)

e 15 modules layers x 1024 channels/layer ~ 15000 cells ( ~as LHC-exp
e TBat DESY and CERN 2022 (with AHCAL)

P All components designed to fit the requirements of a Lepton

Collider Detector
® Ultra compact digital readout systems

® Same granularity as ILD

» Very dense PCBs aka FEV with 1024 readout channels (with digital, analogue, clock signals) in a 18x18

FEV10-12
Highly compact objects with
minimal space for the
components needed to assure
the integrity of the signals & a
proper power management




| CALICE - Analogue HCAL

38 layers
72x72x2.5 cm? /[ layer
22,000 tiles

SiPM under the tiles
for better uniformity
and light collection

3x3cm?tiles

each cell also provides
time information with

~1ns resolution 025F
Mean: 0.04 CALICE AHCAL
é 0.20r  stdDev: 1.57 work in progress
a true 5D “pixel” "
= 0.10t
detector: x,y,z,E,t °
’ . . ’ 2 0.05}
Intensive beam test campaigns in the last years, B P

S ATrverall /s A, 87 July 2022 | including combined with CMS-HGCAL and SiW-ECAL UALIED LI £

INSTITUT DE FISICA
CORPUSCULAR



| Common beam test CERN SPS 06/2022 12 |

AHCAL :

* 38 layers 72x72 cm?

3x3 cells scintillator + SiPM
1.7 cm Stainless Steel (~4A)
6t, 1x1x1.5 m3

S|W-ECAL
15 layers 18x18 cm?
* 0.5x0.5 cm? Si cells
* 2.8+5.6 mm W (21 Xo)
* 100 kg, 0.4x0.4x80 cm?

Synchronization :
checked online i

P Master Clock (from CCC AHCAL). Busy sighals. Common Acg- Wlndows W|th a flxed Offset in clock.

P System controlled by EUDAQ 2

Muons (150GeV), electrons (10-100GeV) and
® Online event building and EUDAQ monitoring tools. pions (10-150GeV)

e Common tools for analysis are work in progress.

s crep2022 [ CAu@d IFIC A
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| semi Digital-HCAL

2 m? RPC assembled Scalable gas distribution

P 48 layers x 28 mm, also made of glass RPC.

® 96 x 96 channels per layer, i.e. et e
Sosf == 3 HCAL
® ~440000 1x1 cm? readout channels. “ o8k E
C 07f 2780 100 120

P Semi digital readout 06 4 Z (cm)
E // CALICE SDHCAL Prellmlnary_:
® 3tunable energy thresholds - O.1MIP -5 MIP - 15 MIP ) E
M H . . g_ —»— Charged particle enel =1OGeV_§
* thresholds coded into 2 bits » pads with few, many or lots of hits. %%~ chgedpance ey 2060y
0.2 —— Charged particle energy = 30 GeV
Z_ —»— Charged pan!cle energy = 40 GeV _E
P Optimize hadronic shower reconstruction via choice of o e piriab Sniqy=Soael ¢

o O T 0 O O A AN O A O U O O |
t h res h (@) | d S. ° ° 1%ista:us;e bef\?veenzsshowsg [cmei5
p Better linearity response, improved energy resolution.

ATNENTall  Irles A, 87 July. 2022 CALi(ed IFIC A




| Semi Digital-HCAL

> Circular CO”iderS (CEPC) eXpeCt power COhsumption -lOO_ 0.8 mW/chips with power pulsing, 80 mW/chips without power pulsing
200 times Iarger than |LC Rectangular section tubes : 2x1 mm s 5 %m = Chips
® Active cooling needed (water cooling using cooper Sy e i
plpeS) Copper plate over: 1.5 mm i - TG \\))

Flow out

e and/or new readout schemes as woven strips (Work in
progress) T

Flow in

symmetry

PCB plate under: 1.4 mm

P Investigating timing using MultiGAP RPC
i

® 4-5 gaps of 250 um each can provide 100 ps time
resolution A

1

I

1

1

] ]
I 1
I I
I !

1

I

I

I

1

Timing can help to separate close-by showers and reduce the confusion for a better PFA application. Example:
pi-(20 GeV), K-(10 GeV) separated by 15 cm.

123 {eVBnINUMDEr <=1 48E1IME: 6.7 8A1ME-7.7}.

LK feventNumbere= 148}

s . “ 1ns resolution ™
d 4 r—
ot _ :
Y Y & ‘ wll
- 1] -

»»»»»»»»»

”. 100 ps resolution

o 5 ¥ 8 8 8 8 ¥ B
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| Realistic detector dimensions: long layers B

Analogue-HCAL and

SlW ECAL Sc-ECAL

Active area: silicon PiN Diodes Scintillator tiles/strips + SiPM Gas RPCs
Typical segmentation: 0.5x0.5 cm? Typical segmentation: 3x3cm? Typical segmentation: 1x1cm?

* Realistic detector dimensions
« Structures of up to 3m in length (more than 10000 cells)
« With compact external components

« Challenge for the power pulsing techniques (for the power consumption management)

e Aol Iries A, 87 July. 2022 CAL ( IF IC
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| Realistic detector dimensions: ultra compact layers 16 |

Current detector interface card - AHCAL Current detector interface card and thin detection unit — SiW ECAL

AVE w T i 1
e R UL TR

“Dead space free” granular calorimeters put tight demands on
compactness
* Current developments within CALICE meet these requirements
* Unique successes in worldwide detector R&D
* Can be applied/adapted wherever compactness is mandatory
¢ Components will/did already go through scrutiny phase in beam tests

cau@s IFIC A
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| Summary and more

P We are in a very exciting moment for the PFA calorimeters prototyping

® High level integration (meeting the very tight technical requirements of the future colliders)

® Discussed projects are near (or already) in the phase of building large scale (~m?3) technological
prototypes.

® Proven stable operation of prototypes in beam test: common test beams campaigns restarted in 2022

p Looking forward for a lepton collider soon!

Many other topics could not be covered in this talk but you may find some extra material in the back up
slides

p CALICE R&D inspired CMS high granularity solution HGCAL. Common testbeams with the AHCAL prototype.
p Further spin-offs: LUXE, ALICE FOCAL, DUNE ND, Belle Il Claws
» New ideas/technologies being explored

e high precision (ps) timing calorimeters?

® New sensors ideas (MAPS, LGADs, etc)

® Dual readout & high granularity

P Original target of the CALICE calorimeters were the linear colliders but the generic concept is also applicable to

circular colliders
u@ IFIC A

X ESI_EOF)C%IEJ)%Z /r/es A" 8m jU/‘y 2022 INSTITUT DE EISICA




| Back-up slides

LERTGll Iries A 57 July 2022
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| Particle Flow Algorithms

pion

"y,
iy,
2
Wy
muon

%
neutron /2 4%4 .- 4
electron 77,7

4 ICHEP 2022
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Concept

P Base the measurement on the subsystem with
best resolution for a given particle type (and energy)

P Separation of signals by charge and neutral
particles in the calorimeters

P Single particle separation

Challenges
P Complicated topology by (hadronic) showers

P Overlap between showers compromises correct
assignment of calorimeter hits

—> Confusion term
® Need to minimize this term as much as possible

cru@ IFIC A




| Requirements for PFA oriented detectors

Jet energy measurement by measurement of individual particles
Maximal exploitation of precise tracking measurement
P large radius and length
® to separate the particles
P large magnetic field
® To increase separation of neutral/charged particles at calorimeters
o

P “no” material in front of calorimeters

® |ow material budget on the tracker + stay inside coil + no active cooling
systems (linear colliders, circular colliders impact to be understood)

P Ultracompactness: small Moliere radius of calorimeters
® to minimize shower overlap
p high granularity of calorimeters

® to separate overlapping showers

P And fast timing calorimeters

LERTGll Iries A 57 July 2022
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INew Kids in the Block

A 5" dimension: time
p O(ns) with “standard” Si/Sc sensors and integrated readout
electronics (to separate slow and fast shower components)

P O(50ps) with ultra-fast silicon sensors: Inverse APD, LGAD, etc

p O(20ps) with GRPC and dedicated elect
Developped for CMS muon upgrade

ranirc IDETIDNOC)

pove e o Inverse APD
[ by Hamamatsu
P Substrate T
P Mutiplication Gain ~ 50
C3 1

Inverse APD as LGAD?

DECAL/MAPS
p Ultra granular
calorimeter under
consideration for
ALICE (and also

p TestBeams in
2019-20-21

® 24 layers, 48
ALPIDE sensors,
24M pixels

.

SiD-ILC, FCC-hh..)

B A DESY Test Beam (Nov 2019)

UNIVERSITYOF
BIRMINGHAM

Theory says, need comparatively small amplification

Dual + PFA calorimetry

p ADRIANO2 (REDTOP) merges the
benefits of a dual-readout and of a
CALICE-type calorimeter,

® Plastic scintillator + heavy dense
glass (only senstite to charged
particles fast detector)

® [ast detectors (80ps)

FIC A
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http://flc.desy.de/hcal/index_eng.html

WCu New PCB - FEV2.x CALi(ed

Laboratoire de Physique
des 2 Infinis

- Improved Layout LLR, IJCLab, LPNHE, OMEGA_

 Better shielding of AVDD and AVDD PA plans and minimisation
of cross-talk between inputs and digital signals.

. * Power Pulsing Mode: new philosophy
oy » limiting the current through the Slab
A (current limiter present on the SL Board) to:
 avoid driving high currents through the connectors
and makes the current peaks local around the SKIROCs chips
 avoid voltage drop along the slab
» ensure temperature uniformity
N » We add large capacitors with low ESR for local energy
storage (around each SKIROC chip)
| » Generate local power supply with LDO (Low Drop Out)
to avod voltage variations

8 - Clean clock distribution all over the slab

o Il » for Slow Control and Readout Clocks

:  Parallel configuration and readout over 2 partitions.

i R i » Driving high voltage up to 350V for 750um wafer (via the ASU connectors)
- » Adding a filter for each wafer HV and limit the current in case of wafer failure

Roman Paschl ILD Meeting May 2022 21



SIW-ECAL LabWindows
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|Jet energy resolution

. \/ 2 2 2 2
Tracker and Calorimeter Resolution in Absolute Scale O Jet — O Track+ O Ha d.+ O elm.+ O Confusion

TT
R R SR T
i i i

Lepton Collider goal is around dEje/Ejer- 3-4%

10 = ( e.g. 2x better than ALEPH)

In a “typical jet” the energy is carried by

Calorimeter Energy Resolution (GeV)
TPC Momentum Resolution (GeV/c)

I E B Charged particles (e*, h*,pt): 65%
E ® Most precise measurement by Tracker
0 1:_ p Photons: 25%
» e Measurement by Electromagnetic Calorimeter (ECAL)
E . e » Neutral Hadrons: 10%
o Liiliil LW A G e Measurement by Hadronic Calorimeter HCAL and ECAL

i 10°
Energy10eV) andMomedilon (Gevre). Particle Flow Algorithm

P Choose the best information in our detector

= ATl rles A, 87 July. 2022




|performance at MIP level

Trigger thresholds
uniform at around
1/2 MIP

PFA requires small pixel size, large segmentation and pattern at low energy:

Threshold [DAC]

DB
E 0.8
= - e Layer1
25 CALICE SiW-ECALs w2
- Layer3 —0.75
- v Layer4
250— © O Layer5
E O Layer6 —0.7
245 Layer7
E —{o65
240 —
235 & - A v v 0.6
230; "N omom w ™ w m & [055
225 —05
o I R E A E P S RPN IR S
220 0 2 4 6 8 10 12 14 160'45
ASIC number
1
’
0.8¢
7
= £
2 0.6¢
8 Y
g
0.4F
0.2

e
LayerlD

Threshold [MIP]

hit detection efficiency [%]

100;
995;
99;
9&5;
o8l

97.5—

CALICE SiW-ECAL ?

o by by b b 4w 1y

83883833
Lo ]

\I.\.I:
14 16

~
i
T

I
o

=3

Position resolution [mm]

=23

»

N
T T

2 4 6 8 10 12

ASIC number
- ~+data
o +MC
» )
I L]
""-M " X ot
C L
C it § FEYERRPE R L
| P T TS T T (T YT (T SN A T N [
0 5 10 20 25 30

15
LayerID

MIP Detection
efficiency ~100%

a) Access to small signals -> Low self-trigger thresholds (with zero supression and high S/N ~10 at MIP)v
b) Tracking in calorimeters -> High MIP detection efficiency v

¢~ ICHEP 2022

7% BOLOGNA
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First step towards transforming SDHCAL into T-SDHCAL

First step towards transforming SDHCAL into T-SDHCAL .
New and easy way of construction MRPC

Using thin spacers made of mylar+double face

PETIROC2A PETIROC2A
cutoz
o DR
board

PETIROC2A

= Front-End Electronics for MRPC readout with
high timing resolution

» The system includes a front-end board (FEB), a
detector interface card (DIF) and a data
acquisition system(DAQ) based on ZCU102.

PETIROC2A

Large timing PCB
*  Board with 8 (could be extended to 12) Petircoc2B ASICs

Pads 2cm x 2cm, 256 channels
Local FPGA (Xilinx Spartan-6 TQFP) embedded on board

Zeulin2

Test System and Setup

Power
Sugply
cCONNeCtions

33cm

Petiroc2A Evaluation Board

Bttom view

N 50cm - Top view

|. Laktineh

ATNENTall  Irles A, 87 July. 2022 CALi(ed I1F IC




| Spinoffs of CALICE R&D I: CMS HGCAL

the way for a number of applications of
highly granular calorimeters and related

* The developments in CALICE have paved Most prominent: The CMS Endcap Calorimeter Upgrade HGCal

technologies in HEP

—

Central contributions by groups very active in i

== | CALICE, including CERN, DESY, LLR, OMEGA.

- BOLOGNA Irles A, 8 July. 2022
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| spinoffs of CALICE R&D I

FOCAL MAPS ECAL.:
Ultrahigh granular calorimeter is under consideration
for ALICE (and also SiD-ILC, FCC-hh...)

Numbers for FOCAL assuming = 1m’ detector surface

LG HG
pixel/pad =1cm? = 30x30
size pm?

total # =25x10° =2.5x10°
pixels/pads

readout = 5 x 104 = 2 x 10¢

channels

P TestBeam in Nov2019 & Feb2020

Longitudinal segmentation

® 24 layers, T T . .
o 48 ALPIDE sensors, “““

New ALPIDE CMOS sensor based
3cmx3cm area 24 layer stack

® 24M pixels
® Electron/positron, E =1.0 - 5.8 GeV

P H6 test beam SPS (Sept./Oct. 2021)
® Mixed beam, E =20 - 80 GeV

* Recent Testheams with
* MIMOSA for HG

* Prototype with
ALPIDE under
construction

- ICHEP 2022 Irles A, 8" July. 2022

~ BOLOGNA
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| Spinoffs of CALICE R&D lii 29

Irles A, 8 July. 2022

* SiPM-on-Tile and scintillator strips as active material
for DUNE Near Detector
» Similar requirements on compactness as lepton collider

detectors
» Study of adaptation of CALICE technologies ongoing
* Including first discussions on engineering level

CCCCCCCCCCC



O . i

SID - Si-W ECAL 6 water

Design configuration: “(20+10)", i.e.
20 thin W layers (2.5 mm)
10 thick W layers (5.0 mm)

+ 30 Si layers

Metallization on detecter from
KPix to cable

Heat Flow

Gap <1 mm el o e ORmdles ive arXiv:1306.8329 - ILC TDR 4: Detectors

Uncorrected Energy Distribution Corrected Energy Distribution Using a Neural Network

Energy leakage of electromagnetic particles estimated F 8=0"tad5 B=0'to45’
by analyzing the patterns in total energy deposition in ¢ :
each layer using neural networks.

Corrected

and o0 Layers (%)
]

(18+6) vs (60+0) GEANT4 models, with:
e energies range: 20— 300 GeV
* incidence angles 6 = 0° - 45°
e azymuthal angles ¢ = 0° - 30°
Design performance possible with 16+8 configuration:

Difference Betwaen 1648 Layers and &0 Layers (%)

|
Difference Between 16+8 Layers

Uncarrected

0 25 30 o 5 10 15 20 25 30

arxiv:2002.05871

:l‘#}'
5
s

ICHEP 2022
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I WC Common beam tests CALI@

Laborataire de Physique
des 2 Infinis

Siw ECAL/SDHCAL (2018) CALICE meets CMS
518 Common beam tests since 2017

TR Baom=

* Common beam tests benefit from common approach within
CALICE

* But also from wider networking activities such as EUDAQ2 of
AIDA2020

* More common beam tests to come after CERN shutdown

FCC Week — November 2020 22

- ATSEET Sl s A, 87 July 2022 CAui(ed [FIC A




| Some challenges at Circular Colliders E

Power pulsing at LC <-> No power pulsing at Circular Colliders => Strong heat dissipation

Rectangular section tubes : 2x1

VR chips 1O A water-bai:id cooling
: system inside copper

fnnr:m S ® Flowor  tubes in contact with

the ASICs to absorb
* , : excess heat.
Flow PCB plate under: 1.4 0 .h-mpeﬁwrﬁ
" symmetry o distribution in an active
layer of the SDHCAL.

symmetry

Example:

CALICE SDHCAL | 27.147 (max) - 24.591 {min) =2.556 °C

e e by

Water cooling : h = 10000 W/m%k

Thermal load : 80 mW/chip

e Al r/es A, 87 July 2022 C/\AE@ IFIC A
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| Dual & high granularity (and timing) calorimetry

P See Cristal Calorimetry talks from

yesterday. ADRIANO2 merges the benefits of a dual-readout and of a
B Another example: ADRIANO2 calorimeter CALICE-type calorimeter, creating the base for a new generation
(REDTOP detector) of high-performance detectors.

P Active mat.l: Plastic scintillator

P Active mat.2: heavy dense glass (only sensible to
charged particles via Cherenkov rad). Fast detectors'!

P Another example: ADRIANO?2 detector

S ICHEP 2022
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http://flc.desy.de/hcal/index_eng.html

| The next decade: ps timing in calorimeters E

Pioneered by LHC Experiments, timing detectors are/will be also under scrutiny by CALICE Groups
Inverse APD as LGAD?

P* Strip P* Strip P* Stri
- — Inverse APD
[ by Hamamatsu
P Substrate T

P Multiplication Gain ~ 50
=" |
H-l-

Theory says, need comparatively small amplification

S * Shot noise may be limiting
Bottom stoel plate E factor
;i * Expect interesting comparison
Under development: between inverse APD
GRPC with irjrﬂ_gAD as e.g. used by
PETIROC
. < 2005 it /| Noise floor, gain independent ° NOT that Members of CALICE are
pS ime jiter ' also members of ATLAS-HGTD
* Developed for CMS Muon upgrade T E—T >
Gain

Expect interesting results on timing detectors from CALICE in coming years

Irles A, 8 July. 2022 ﬁc I F IC
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| R&D on materials

Position Sensitive Devices

charged particle charged particle Megatiles for scintillator
: electrodes electrodes based calorimeters
P+ cell P+ Pad
sensitive area sensitive area G |
(n substrate) (n substrate) ' : .
bias pad bias pad : 10
Ordinal silicon pad: PSD: charge drift to P+ pad,
charge drift to one pad then resistively split to electrodes
Prototype of Crystal calorimeter . -===
gaERpoL
Lead Glass Blocks MPPC - 1l 1-1-T-T o
] 1 J Tail C{:ltcher . - ik
] ]
e+ i
——I-*I ' ! * Testsin lab ...
| ) * ... but also in beam tests
{ * Megatiles and LG-Calo in 2019
trigger 4
EBU Strlp X&Y CEPC Xtal Calo Workshop — July 2020 23
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| Power pulsing

,Time betwean bed bunch eressing: 337 ne "
[ |

o

Tirn @ badegen Bwo traing: 200ms (5 HZ)

=)

ame

Train lpngth 2820 bunch X (950 ps)

1ms | 5%) 199ms (98%)

— e

e s
1% duty cycle 95% idle cycle

M.B. Final numbers may vary

Smes ((25%)  .5ms (.25%) A

* Electronics switched on during > ~1ms of ILC bunch train and data acquisition

* Bias currents shut down between bunch trains

Mastering of technology is essential for operation ofILC detectors

e ICHEP 2022 /r/esA., gth Ju/y 2022 CB/L\J@G !nET!Eg A
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