Improved track reconstruction for prompt and long-lived particles in **ATLAS for the LHC Run 3**

Track reconstruction in the ATLAS Inner Detector (ID)

1. pp collision \rightarrow Charged **particles** hit ID sensors. 2. Signals in adjacent channels grouped together \rightarrow Cluster.

3. Form track seed

with 3 pixel clusters

(one in each layer).

 \rightarrow Associate hits to

4. Search roads \rightarrow

3 charged particles 3 charged particles 1 pixel cluster 3 pixel clusters

5. More than one hit per cluster? 6. Solve ambiguity using Machine Learning \rightarrow **Hit** positions and their uncertainties.

7. Re-fit of the obtained tracks using **global** χ^2 method → Final tracks. 8. Look at the final track **position** at their closest point to the **beamline** \rightarrow Fit to obtain primary vertices (PV).

LHC Run 3, what a challenge!

- From Run 2 to Run 3, increase of the number of protonproton collisions per bunch crossing (pile-up, $\langle \mu \rangle$).
- Run 2 $\rightarrow \langle \mu \rangle \sim 30$
- > Run 3 $\rightarrow \langle \mu \rangle \sim 50$

Two main challenges in Run 3:

- **1.** Software-related \rightarrow Larger $\langle \mu \rangle \Rightarrow$ Larger # of hits \Rightarrow More complex combinatorics for track reconstruction \Rightarrow Higher per-event processing time.
- **2. Physics**-related \rightarrow Larger $\langle \mu \rangle \Rightarrow$ Larger density of hits
 - \Rightarrow Larger density of tracks \Rightarrow Need better algorithms

e.g. to discriminate merged clusters or to compute PVs.

Improved hit position determination: Mixture Density **Network (MDN)**

tracks.

- Precise knowledge of hit position is essential for high sensitivity to track parameters e.g. p_T .
- **Run 2** \rightarrow Several Neural Networks (NN) to predict particle hit position and its uncertainty.
- **Run 3** \rightarrow One MDN predicts hit position and its uncertainty. Better nominal position and resolution than Run 2 NNs.

Processing time reduction

Improved primary vertex (PV) reconstruction

 \geq Precise determination of PV is essential to reconstruct the full **kinematic** properties of an interaction.

- **Run 2** \rightarrow Iterative vertex finder (IVF). \geq
- \succ **Run 3** \rightarrow Adaptative multi-vertex finder (AMVF) . Better reconstruction efficiency than Run 2 IVF.

Consequences for the full track reconstruction chain

Better track identification (less fake tracks)

Improved Large-Radius Track (LRT) reconstruction algorithm

- Standard track reconstruction \triangleright is optimized for particles produced close to the interaction point (IP).
- \triangleright Dedicated LRT reconstruction algorithm crucial for Long-Lived Particle (LLP) searches.
- **Run 2** \rightarrow LRT reconstruction optimized \succ for high signal efficiency \Rightarrow High processing times for real data-taking \Rightarrow Applied to O(10%) of events.

David Muñoz Pérez on behalf of the ATLAS Collaboration

