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Improved track reconstruction for
prompt and long-lived particles in 
ATLAS for the LHC Run 3
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LHC Run 3, what a challenge!
Ø From Run 2 to Run 3, increase of the number of proton-

proton collisions per bunch crossing (pile-up, 𝜇 ).
Ø Run 2 → 𝝁 ~ 30
Ø Run 3 → 𝝁 ~ 50

Two main challenges in Run 3:
1. Software-related → Larger 𝜇 ⇒ Larger # of hits ⇒

More complex combinatorics for track reconstruction
⇒ Higher per-event processing time.

2. Physics-related → Larger 𝜇 ⇒ Larger density of hits
⇒ Larger density of tracks ⇒ Need better algorithms
e.g. to discriminate merged clusters or to compute PVs.
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Improved hit position 
determination: Mixture Density

Network (MDN)

Improved Large-Radius Track
(LRT) reconstruction algorithm

Improved primary vertex (PV) 
reconstruction

Ø Precise knowledge of hit position is
essential for high sensitivity to track
parameters e.g. 𝑝!.

Ø Run 2→ Several Neural Networks (NN)
to predict particle hit position and its
uncertainty.

Ø Run 3 → One MDN predicts hit position
and its uncertainty. Better nominal
position and resolution than Run 2
NNs.

Ø Standard track reconstruction is
optimized for particles produced close
to the interaction point (IP).

Ø Dedicated LRT reconstruction
algorithm crucial for Long-Lived
Particle (LLP) searches.

Ø Run 2→ LRT reconstruction optimized
for high signal efficiency ⇒ High
processing times for real data-taking ⇒
Applied to O(10%) of events.

Ø Run 3 → LRT reconstruction was
optimized ⇒ Reconstructed in every
event.

Ø Precise determination of PV is
essential to reconstruct the full
kinematic properties of an interaction.

Ø Run 2 → Iterative vertex finder (IVF).
Ø Run 3 → Adaptative multi-vertex finder

(AMVF) . Better reconstruction
efficiency than Run 2 IVF.

Consequences for the full 
track reconstruction chain

First proton-proton
collisions of LHC Run 3 
at 𝒔 = 900 GeV

Track reconstruction in the ATLAS Inner Detector (ID)

3 charged particles
3 pixel clusters

3 charged particles
1 pixel cluster

1. pp collision →
Charged particles
hit ID sensors.
2. Signals in 
adjacent channels
grouped together →
Cluster.

3. Form track seed
with 3 pixel clusters
(one in each layer).
4. Search roads →
Kalman Filter algorithm
→ Associate hits to 
tracks.

5. More than one hit per 
cluster?
6. Solve ambiguity using
Machine Learning → Hit 
positions and their
uncertainties.

7. Re-fit of the obtained
tracks using global 𝝌𝟐
method → Final tracks.
8. Look at the final track
position at their closest
point to the beamline →
Fit to obtain primary
vertices (PV).

Processing time reduction Better track identification (less fake tracks)

David Muñoz Pérez
on behalf of the ATLAS Collaboration
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ATL-PHYS-PUB-2019-015

IDTR-2021-001
IDTR-2021-003

ATL-PHYS-PUB-2021-012

ATL-PHYS-PUB-2022-033

ATL-PHYS-PUB-2021-012

Ø Per-event processing time of the full track
reconstruction chain reduced by a factor > 𝟐
in high pile-up environments.

Ø # of fake tracks drastically reduced at high
pile-up.

First alignment of 2022 
data-taking!!

Ø Radiation damage of the pixel sensors was included in Run 3 simulation.
Ø 900 GeV Data/MonteCarlo shows good agreement.

🎊
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https://www.sciencedirect.com/science/article/pii/0168900287908874
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-033/
https://cds.cern.ch/record/2766886

