Hadronic Reconstruction with the ATLAS Detector at the LHC

Pierre-Antoine Delsart ICHEP 2022

Hadronic jets at the LHC

Hadronic jets

- Phenomena resulting of a parton emission
- Ubiquitous in LHC analyses

- Continuous work in ATLAS to optimize
 - Energy and Mass scale and resolution
 - Uncertainties on E and Mass
- Discrimination between different types of jets

Eur. Phys. J. C 81 (2021) 689

22-07-05

P-A Delsart

Hadronic jets at the LHC Hadronic jets Phenomena resulting of a parton emission Ubiquitous in This talk Continuous work selection of 5 recent published works & results Energy and M Uncertainties on E and Mass Discrimination between different types of jets 22-07-05 P-A Delsart

Jet reconstruction with ATLAS

- Jet constituents: set of 4-vectors representing the hadronic flow. Build from
 - Calorimeter clusters
 - Tracks
- Reconstruct jets
 - Group constituents with a proper Jet Algorithm
 - Apply "grooming" (PU mitigation)
 - Calibrate E and M

Calorimeter cluster classification and calibration with Machine Learning (ML)

ATL-PHYS-PUB-2020-018 and JETM-2022-002

Cluster calibration with ML

- Calo clusters are build of many cells spatially connected
- can be represented as

 images (1 cell= 1pixel)
 point clouds (1 cell = 1 point)
 graphs (1 cell = 1 node)

 Graph NN
- Exploit advanced ML techniques to learn to classify and calibrate on single pion simulated samples (π⁰,π⁺,π⁻)
 - charged $\pi \rightarrow$ hadronic showers
 - neutral $\pi \rightarrow EM$ showers

different calorimeter responses

Cluster classification with ML

- Use ML to classify charged vs neutral pions
- Compare to standard ATLAS technique
 - cut based on cluster variables
 - "P^{EM}"

ML improves rejection by factor >5

Cluster calibration with ML

- Use ML to calibrate the hadronic response
 - Response : distribution of r=Ereco/Etrue
- Compare to standard ATLAS uncalibrated (EM) and calibrated (LCW) clusters

Measuring hadronic response in data

Eur. Phys. J. C 82 (2022) 223

Measuring hadronic response

- Select $W \rightarrow \tau \nu_{\tau} \rightarrow \pi \nu_{\tau} \nu_{\tau}$ events
 - by requiring isolated tracks matched to hadronic clusters
 - Calculate E as sum E of clusters within $\delta R{<}0.15$
- Fit E_{T(clus)}/p_{T(trk)} to measure hadronic response
- Study response scale, resolution, longitudinal profile

Hadronic scale in data

- Hadronic scale measured with good
 precision
 - <1% up to p_T =185GeV in barrel
 - <0.6% up to 120GeV
- Scale ~2% under-estimated in central, ~4% over-estimated in forward
 - consistent with other measurements

Hadronic scale in data

- Hadronic scale measured with good
 precision
 - <1% up to p_T =185GeV in barrel
 - <0.6% up to 120GeV
- Scale ~2% under-estimated in central, ~4% over-estimated in end-cap
 - consistent with other measurements

Other hadronic measurements

- Response resolution
- longitudinal profile
- Important handles in
 - constraining jet E scales
 - τ lepton hadronic scale
 - jet substructure measurements
 - tune run3 response

Improving large-R jet building

Eur. Phys. J. C 81 (2021) 334

Jet constituents building

• How to combine Tracks & cluster to build constituents ?

Large-R jet building

- Many different combinations studied
- Compared with different
 metrics
 - Jet E and M resolution
 - W/Z/top tagging performance
 - Pile-Up (PU) stability

Pile-Up dependence of Large-R jet Mass

• Number Primary Vertex (NPV) impact on W-jet mass

 \sim

Large-R W&top tagging performances

Choice of UFO constituent improves background rejection by factor 2

Large-R jet mass resolution

mass resolution optimal on full range for UFO-based jets

Large-R jet mass resolution

Hadronic flavour content impact on Jet Energy

ATL-PHYS-PUB-2022-021

Flavour impact on p_T response

- p_T response differences in q-initiated vs g-initiated jets
- depends on MC generator
- Important contribution to Jet p_T uncertainty (mid to low- p_T)

Flavour impact on p_T response

- p_T response differences in q-initiated vs g-initiated jets
- depends on MC generator
- Important contribution to Jet p_T uncertainty (mid to low- p_T)

Understanding the different responses

 Jet response depends on the Baryon & Kaon E fraction

- These fractions vary with the generator
- and in quark vs gluon jets

P-A Delsart

Understanding the different responses

- Impact of hadron content on jet response quantified for the 1st time
- Re-weighting baryon/kaon distributions reduces majority of differences across generators
- Motivates further generator tuning and measurements to better constraint uncertainties

Improving Missing p_T with ML

ATL-PHYS-PUB-2021-025

Missing p_T reconstruction with ML

- ATLAS provides different Working Points for p_{Tmiss}
 - ex: reject p_{Tmiss} vs use in calculations such as m_T
 - different use cases ↔ different jet selection entering p_{Tmiss} definition ↔ different sensitivity to PU
- Use all WP inputs+other event-level variables to perform NN regression of p_{xmiss} & p_{ymiss}
- Train on mix of samples with various p_{Tmiss} topologies
 - $t\bar{t}$, $ZZ \rightarrow vvII$, $WW \rightarrow vIvI$

→ **METNet** network

METNet performances

- Compare NN prediction to standard WP
 - VS P_{Tmiss}
 - vs NPV (PU sensitivity)
- Better resolution in all cases
- Including on $Z \rightarrow \mu\mu$ not used during training

METNet performances

- Good p_{Tmiss} response and distribution bias
 - Use of additional "Sinkhorn" loss can help with tails
- Promising technique
 - W.i.P , can be refined (ex, including track information)
 - Seem adaptable to any topology

P-A Delsart

Conclusions

- After decades ATLAS continues to refine its hadronic and p_{Tmiss} reconstruction
- Many recent and on-going works at every levels
 - from low-level cluster calibration...
 - ... to jet uncertainties
- Using more and more powerful ML tools
 - but also exploring leftover details

Necessary for optimal physics analysis from precision measurements to BSM exploration ... and to face HL-LHC challenges