

Physics opportunities with a MIP Timing Detector in CMS for HL-LHC

Livia Soffi on behalf of the CMS Collaboration

• Mip Timing Detector (MTD): new 30-40 ps timing resolution detector for CMS at HL-LHC

• Mip Timing Detector (MTD): new 30-40 ps timing resolution detector for CMS at HL-LHC

Recover Run 2 performances in harsh pileup
(PU) HL-LHC condition

• Mip Timing Detector (MTD): new 30-40 ps timing resolution detector for CMS at HL-LHC

- Recover **Run 2 performances** in harsh pileup (PU) HL-LHC condition
- Improve reconstruction and selection of **physics objects**
- Extends sensitivity to Long Lived Particles (LLP) beyond typical analysis strategies
- Provides implicitly particle identification (PID) capabilities
- New opportunities of Heavy Ion physics (<u>DP2021-037</u>) and **B-physics**

• Mip Timing Detector (MTD): new 30-40 ps timing resolution detector for CMS at HL-LHC

10:10 Precision Timing with the CMS MTD Barrel Timing Layer for HL-LHC Speaker: Francesca Maria Addesa (INFN)

- Improve reconstruction and selection of physics objects
- Extends sensitivity to Long Lived Particles (LLP) beyond typical analysis strategies
- Provides implicitly particle identification (PID) capabilities
- New opportunities of Heavy Ion physics (<u>DP2021-037</u>) and **B-physics**

MTD Resolution Scenarios

- MTD <u>CMS-TDR-020</u>: MIPs w/ 30–40 ps resolution degrading to 50–60 ps by the end of operations
- <u>New Public Results Released for ICHEP2022</u>: Additional physics channels that benefit from timing information: explore impact of potentially degraded performance
 - **Barrel** (BTL) Resolution scenarios:
 - ~35 ps Nominal TDR performance
 - ~50 ps Scenario with potential degradated performance due to radiation damage (dark current contribution increases) (*)

~70 ps – Extreme scenario with potentially degraded performance and the largest safety margin on radiation level uncertainties

(*)<u>Current projections</u>: based on prototype studies with sensor modules and near-to-final ASICs, close to TDR expectations (optimization in progress till the end of 2022) Endcap (ETL): excellent performance maintained

<u>Current projections</u>: intense LGADs studies marginal degradation in region of less than 5% of the area in the last 10% of the luminosity, including fluence safety margin

Higgs Bosons Pair Production at HL-LHC

- One of the main goals of the LHC physics programme: λ_{HHH}
- Benchmark channel used to gauge the impact of pileup reduction including time cleaning of events.

Higgs Bosons Pair Production at HL-LHC

- One of the main goals of the LHC physics programme: λ_{HHH}
- Benchmark channel used to gauge the impact of pileup reduction including time cleaning of events.

- Best experimental sensitivity: five channels explored and combined
- Richness of physics objects: MTD has large integral effect

Pileup mitigation B-tagging Lepton isolation MET resolution

25–40% of reduction

Pileup mitigation B-tagging Lepton isolation MET resolution

Pileup mitigation B-tagging Lepton isolation MET resolution

Updated Performance of HL-LHC HH sensitivity with MTD

 The cumulative effect of the gains at the single object level translates into an increase in the signal yield at constant reducible background

- MTD will enable CMS to (almost) achieve standalone evidence for HH production
- These improvements w/o MTD would require 31% more luminosity (+3 y of data taking) w/ nominal scenario and ~20% (+2 y) w/ degraded scenarios

Physics opportunities with a MIP Timing Detector in CMS for HL-LHC - ICHEP2022 - Livia Soffi

Update

Long Lived Particles detection with MTD

Long Lived Particles decaying to photons

 MTD essential to properly determine the primary vertex time (large gain in sensitivity w.r.t. ECAL only scenario)

Long Lived Particles decaying to photons

 MTD essential to properly determine the primary vertex time (large gain in sensitivity w.r.t. ECAL only scenario)

Long Lived Particles decaying to photons

- Update
- MTD essential to properly determine the primary vertex time (large gain in sensitivity w.r.t. ECAL only scenario)
- ECAL time resolution: 30 ps 14 TeV **CMS** Phase-2 Simulation Preliminary 10⁶ cr [cm] ECAL surface 10⁵ GMSB $\chi^0_1 \rightarrow \gamma + \tilde{G}$ MTD - TDR (1000 fb⁻¹) MTD surface **10**⁴ MTD w/ BTL 70ps (1000 fb⁻¹) 10^{3} (0,0,0) 10² Colliding LHC beams **Primary Vertex** Colliding LHC bear 10 Explore impact of different BTL scenarios **10**⁻¹ High tracks multiplicity expected: exact MTD **10**⁻² resolution not critical in this 200 600 400 800 1000 case since TOF dominated Λ [TeV] by ECAL

MTD as a time-of-flight detector

 Detection of anomalous moving particles (slow velocities, q!=1 charges): BSM(CMS-TDR-020)

• Particle Identification (PID): Heavy Ions(DP2021-037) and B-Physics

MTD as a time-of-flight detector

 Detection of anomalous moving particles (slow velocities, q!=1 charges): BSM(CMS-TDR-020)

• Particle Identification (PID): Heavy Ions(DP2021-037) and B-Physics

10:28 New opportunities for understanding high-density QCD matter with CMS PhaseII detector at the High Luminosity (\$17m LHC era

Speaker: Yousen Zhang (Rice University (US))

Detection of Slow Moving Particles

Heavy Stable Charged Particles

with very large lifetime discrimination

MTD Impact in Particle Identification

PID provided by MTD exploited in **Heavy Ion and B-Physics** measurements

- Based on the TOF difference of particles with different masses
- $\Delta t = \frac{L}{c} \left(\frac{1}{\beta_{meas}} \frac{1}{\beta_{hyp}} \right)$ Detailed detector response model implemented in the full CMS reconstruction algorithms

Dependence of PID performances from MTD resolution

- Studied using a simplified model based on the DELPHES program in order to tune MTD BTL resolutions
- The range of momentum with a purity higher than 70% is shown for different species and time resolution scenarios

Physics opportunities with a MIP Timing Detector in CMS for HL-LHC - ICHEP2022 - Livia Soffi

NEW

PID w/ MTD application in B-Physics

• CP violation in the $B_{0s} \rightarrow J/\psi \phi(1020)$ decay: HL-LHC projection exists w/o PID

- Benchmark channel to gauge **benefits from timing in flavour tagging**

• <u>Strategy:</u>

 $B_{s}^{0}\left\{\overline{b}_{s}^{\overline{b}},\overline{w}^{T},\overline{s}_{s}^{\overline{c}}\right\}J/\psi$

- Initial **B flavour "tagged"** by exploiting the charge correlation between the s-quark sign and the charge of a **soft kaon from the PV** (same-side tagging)

- Deep Neural Network tagging algorithm w/ event-by-event tag decision and expected mis-tag rate

- Figure of merit to quantitatively compare different tagging techniques

$$P_{\rm tag} = \epsilon_{\rm tag} D_{\rm tag}^2 = \epsilon_{\rm tag} (1 - 2 \,\omega_{\rm tag})^2$$

PID scenario	Gains in P _{tag}
MC truth	+66%
PID with $\sigma_{BTL} = 40 \text{ ps}$	+24%
PID with $\sigma_{BTL} = 70 \text{ ps}$	+14%

• Significant improvement w/ PID from MTD on top of Phase-2 extrapolation

Conclusions and Outlook

- MTD detector design driven by scientific requirements which follow from the physics goals of the HL-LHC program
- MTD time **resolution**: **30–40 ps at beginning of HL-LHC**. Still effective at the end of operation after degradation due to radiation damage.

Final optimization of the sensors is in progress to achieve the TDR target

- New analysis capabilities to CMS :
 - Enhance feasibility of SM precision measurements
 - Explore non conventional signatures with Long Lived Particles
 - Boost Heavy lons and B-Physics capabilities with Particle Identification