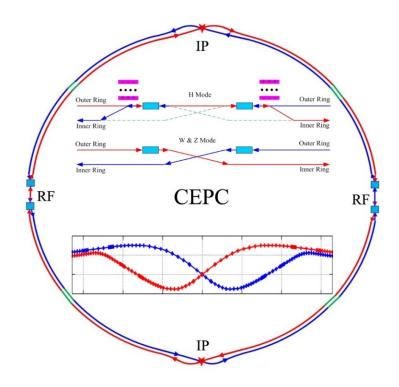
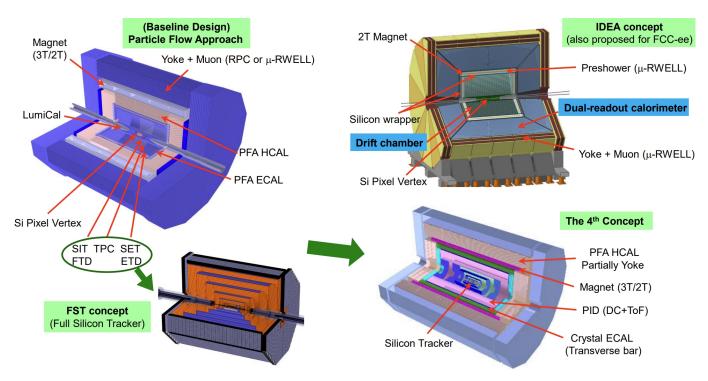
EWK measurements in CEPC

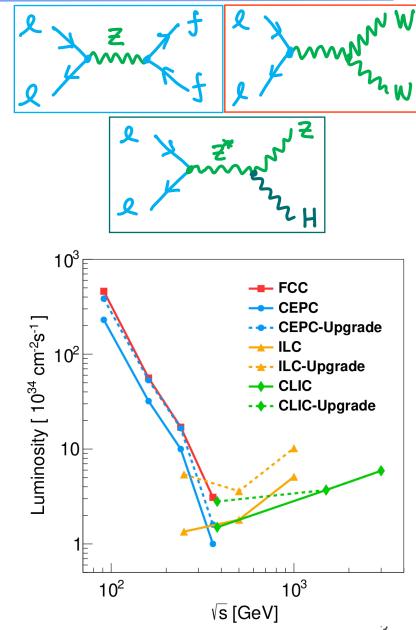
ICHEP, 06-13 July, 2022, Bologna, Italy


Bo Liu IHEP, CAS



CEPC Introduce to CEPC

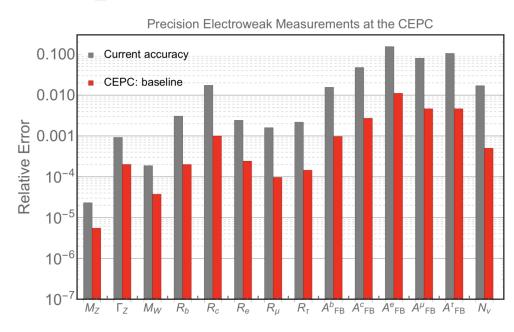
- CEPC is designed as the double ring accelator with length ~100km
- To run with collision energy at 240 GeV, above the ZH production threshold for ~1M Higgs; at the Z pole for ~Tera Z, at the W+W- pair, and possible ttbar pair production threshold.
- Four conceptual designes of detectors



The CEPC program

СЕР	CEPC Operation mode		Z	W ⁺ W ⁻	ttbar
	\sqrt{s} [GeV]	~ 240	~ 91.2	~ 160	~ 360
	Run time [years]	7	2	1	-
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
(30MW)	$\int oldsymbol{L} oldsymbol{dt}$ [ab $^{ ext{-}1}$, 2 IPs]	5.6	16	2.6	-
(55,000)	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
F	Run time [years]		2	1	5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
(50MW)	$\int m{L} \ m{dt}$ [ab $^{ ext{-}1}$, 2 IPs]	20	96	7	1
(331113)	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

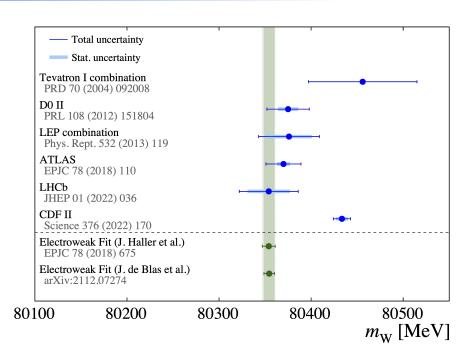
- Updated design with increased luminosity compared to CDR proposal.
 - Comparable with FCC
- New proposed ttbar threshold run

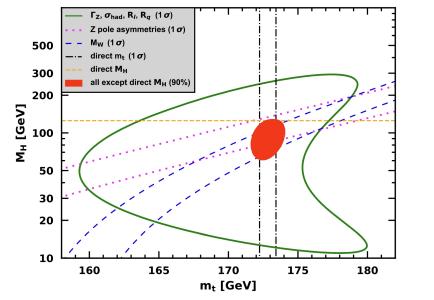

Potential of electroweak measurement in CEPC

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37–41]	0.1 MeV (0.005 MeV)	Z threshold	E_{beam}
$\Delta\Gamma_Z$	$2.3 \ \mathrm{MeV} \ [37-41]$	$0.025~{ m MeV}~(0.005~{ m MeV})$	Z threshold	E_{beam}
Δm_W	9 MeV [42-46]	$0.5~\mathrm{MeV}~(0.35~\mathrm{MeV})$	WW threshold	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0~\mathrm{MeV}~(1.8~\mathrm{MeV})$	WW threshold	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10)~\mathrm{MeV}^a$	tt threshold	
ΔA_e	$4.9 \times 10^{-3} \ [37, 51-55]$	$1.5 \times 10^{-5} \ (1.5 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	$0.015 \ [37, 53]$	$3.5 \times 10^{-5} \ (3.0 \times 10^{-5})$	Z pole $(Z \to \mu\mu)$	point-to-point Unc.
$\Delta A_{ au}$	$4.3 \times 10^{-3} \ [37, 51-55]$	$7.0 \times 10^{-5} \ (1.2 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	$0.02 \ [37, 56]$	$20 \times 10^{-5} \ (3 \times 10^{-5})$	Z pole	QCD effects
ΔA_c	$0.027 \ [37, 56]$	$30 \times 10^{-5} \ (6 \times 10^{-5})$	Z pole	QCD effects
$\Delta\sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002 (5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	0.017 [37, 57, 62–65]	$0.001~(2\times10^{-5})$	Z pole	gluon splitting
δR_e^0	0.0012 [37-41]	$2 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam} and t channe
δR_{μ}^{0}	0.002 [37-41]	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37–41]	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta N_{ u}$	$0.0025 \ [37, 66]$	$2 \times 10^{-4} \ (3 \times 10^{-5} \)$	ZH run $(\nu\nu\gamma)$	Calo energy scale

Great opportunity to test the consistency of SM EWK sector.

CEPC snowmass white paper: arXiv:2205.08553

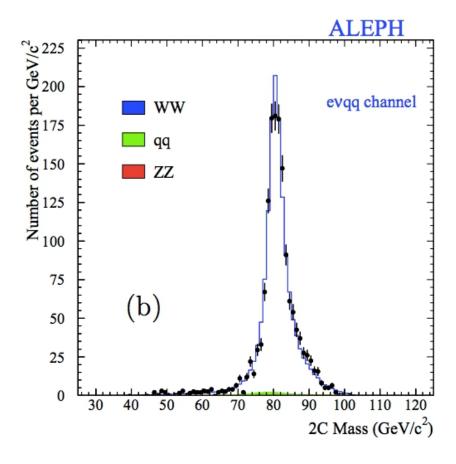


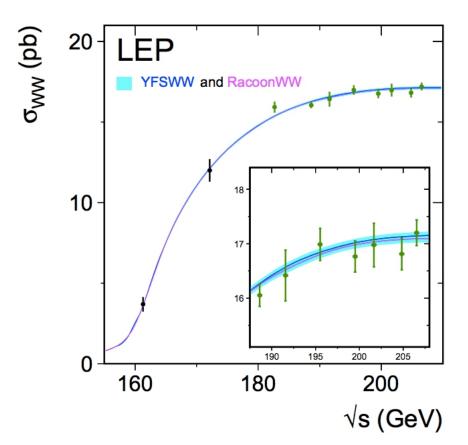

Fundamental constant	δx/x	measurements
$\alpha = 1/137.035999139 (31)$	1×10 ⁻¹⁰	$\mathrm{e}^{\pm}g_2$
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10 ⁻⁶	μ [±] lifetime
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC
$sin^2\theta_W = 0.23152 \pm 0.00014$	6×10 ⁻⁴	LEP/SLD
$m_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10 ⁻³	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10 ⁻³	LHC

W boson mass measurement

- Key gradient for electrweak sector
- Very important role to test the SM consistency
 - Predictable with given EWK parameters
- Observed 7σ deviation wrt SM predictions
- Difficult to reach to same level of precision at LHC
- Next generation ee collider is essential

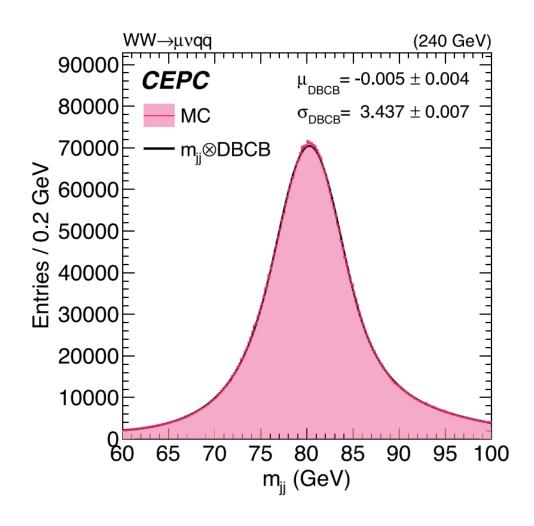
$$\begin{split} m_W^2 \left(1 - \frac{m_W^2}{m_Z^2}\right) &= \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta) \\ \underset{\sim}{\text{W}} & \underset{\sim}{\text{W}} & \underset{\sim}{\text{Y}} & \underset{\sim}{\text{W}} & \underset{\sim}{\text$$




W boson mass measurement

Two approaches for W boson mass measurement at lepton collider (from LEP)

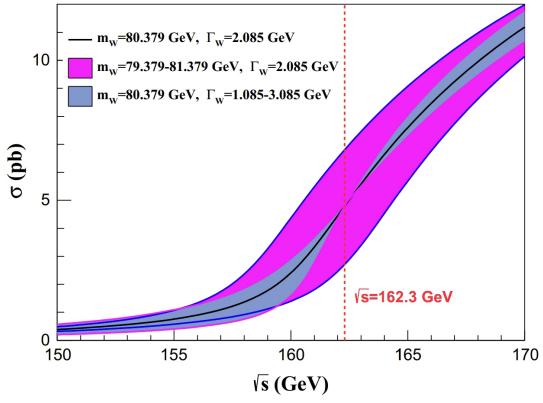
Direct measurement
Performed in ZH runs
Precision 2~3 MeV



Indirect measurement
Perform WW threshold scan
runs (157~172 GeV)
Precision at 1 MeV level

CEPO W boson mass measurement

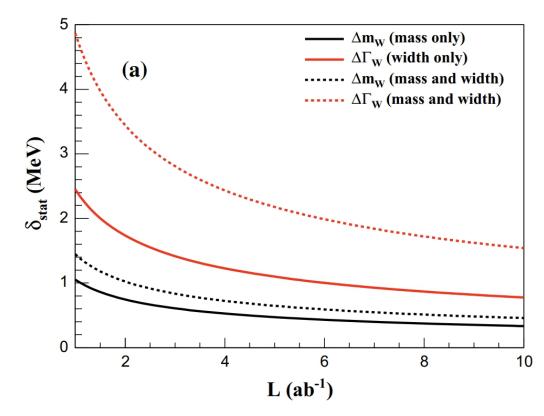
- Perform measurement in ZH run
- Expected 2-3 MeV uncertainty on W boson mass using two lvqq process at 240 GeV
- About <10 MeV achieved with only µvqq event from 5 ab⁻¹ from JINST 16 P07037
- Further studies ongoing


JINST 16 P07037

W boson mass measurement

- Joint effort of CEPC/FCC-ee to optimize WW threshold scan data taking strategy
- Assuming 1 year data taking with 2.6 ab⁻¹ luminosity (update design propose x2)
- Four points proposed
 - 157.5 GeV, 161.5 GeV and 162.5 GeV (W mass, W width measurement)
 - 172.0 GeV (α_{QCD} (m_W) measurement, Br(W→had), CKM |V_{CS}|)

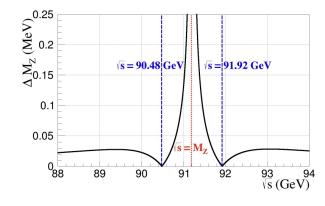
E _{cm} (GeV)	Lumiosity (ab ⁻¹)	Cross section (pb)	Number of WW pairs (M)
157.5	0.5	1.25	0.6
161.2	0.2	3.89	8.0
162.3	1.3	5.02	6.5
172.0	0.5	12.2	6.1



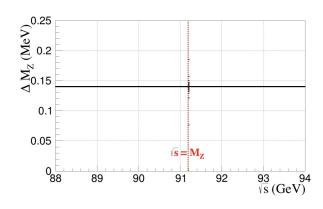
W boson mass measurement

- Joint effort of CEPC/FCC-ee to optimize WW threshold scan data taking strategy
- Assuming 1 year data taking with 2.6 ab⁻¹ luminosity (updated design propose x2)
- Expected to reach 1 MeV precision for mW
- Could be further improved with updated calibration method for beam energy
 - With inverse-compton scattering for beam energy calibration, could further reduce systematic uncertainty (Nucl. Instrum. Meth. A 1026 (2022) 166216, Rev. Sci. Instrum. 91 no. 3, (2020) 033109)

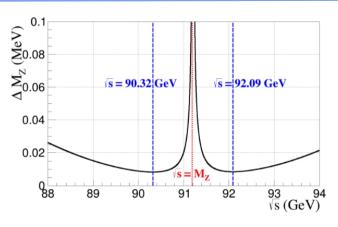
Observable	m_W	Γ_W
Source	Uncertain	nty (MeV)
Statistics	0.8	2.7
Beam energy	0.4	0.6
Beam spread	_	0.9
Corr. syst.	0.4	0.2
Total	1.0	2.8

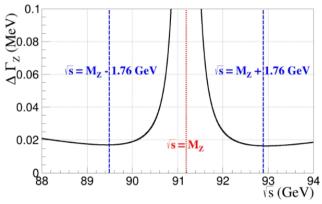


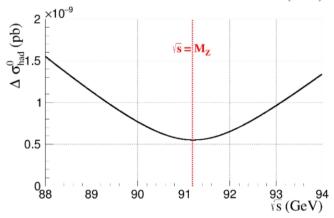
Z boson mass and width measurement


- Tera-Z could help improve m_Z precion by one order of magnitude
- Systematic uncertainty dominant
- Improved energy calibration would further reduce uncertainties

Parameter	$\delta_{ m stat}$	$\delta_{ m total}$
$M_{\rm Z}$ (KeV)	7	66
$\Gamma_{\rm Z} ({\rm KeV})$	13	126
$\sigma_{\rm had}^0~({ m pb})$	0.09	1.73

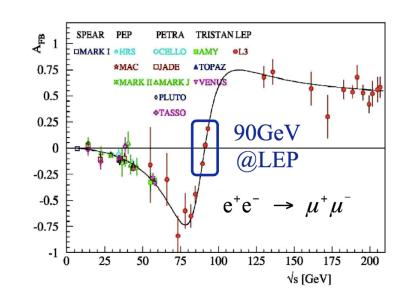

 $\Delta E = 0.14 \text{ MeV}$

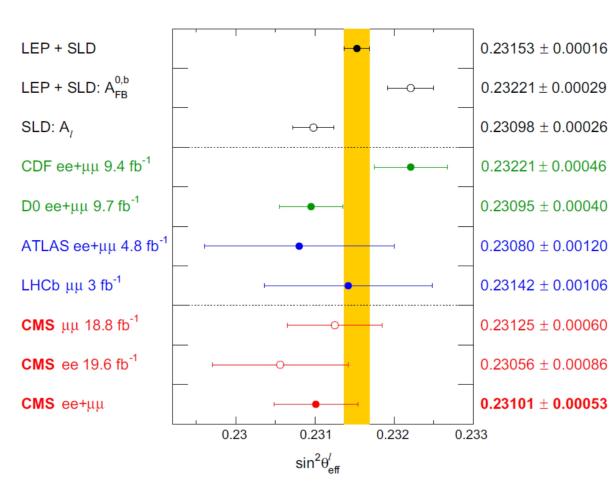

Uncertainty of energy scale



 $\Delta \sigma_{\rm E} = 0.57 \ {\rm MeV}$

Uncertainty of energy spread


Weak mixing angle $\sin^2\theta_W$


- Key parameter in electroweak sector
 - ~3σ tension between LEP and SLC measurements
 - Experimental syst. much larger than theory syst.

	Sin²θ _W
LEP	0.23221 ± 0.00029
SLC	0.23098 ± 0.00026
Theory	0.23121 ± 0.00004

Extract from A_{FB} measurement

$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

Weak mixing angle $\sin^2\theta_W$

- Stat. Unc. dominated in LEP and Tevatron measurements
- Syst. Unc. (PDF) will become dominated systematics for LHC measurements
- CEPC has potential to improve $\sin^2\theta_W$ by two order of magnitudes
- Theory unc. is about 4×10⁻⁵ level with two loop calculation

Experiment	Stat. (10 -5)	Syst. (10 -5)	Theory unc. (PDF+QCD) (10-5)	Total unc. (10 -5) δsin²θ _W
LEP	29	~ 1	~0	29
Tevatron	27	5	18	33
LHC 8TeV	36	18	35	53
LHC 13TeV By Projection	~15	> 20	> 25	~ 20
CEPC By LEP Projection	~0.2	~0.2	4 (Today)	~0.3

CEPE Rb measurement

At LEP measurement 0.21594 ±0.00066

- $\frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to had)}$
- CEPC aim to improve the precision by a factor 10~20 (0.02%)
- Rb measurement is sensitive to New physics models (SUSY)
 - SUSY predicts corrections to $Z \rightarrow$ bb vertex
 - Through gluino and chargino loop ...

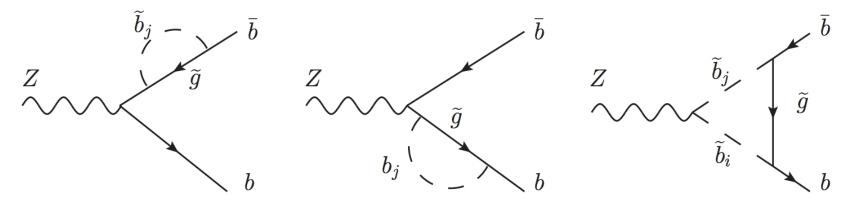
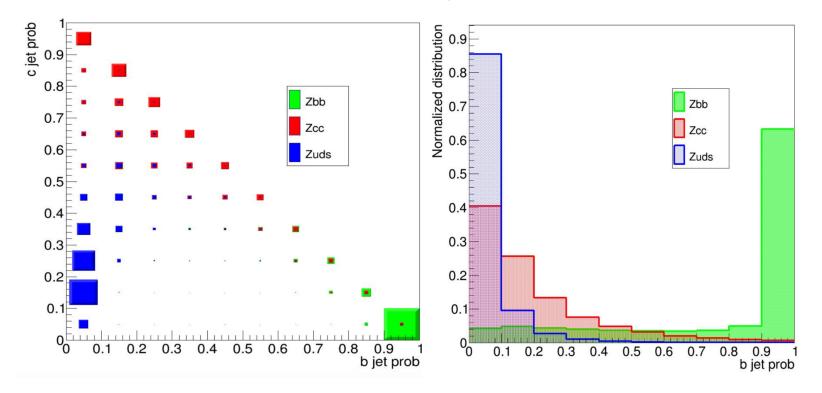



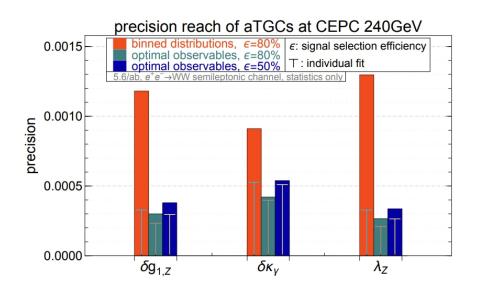
FIG. 1: One-loop Feynman diagrams of gluino correction to $Z \to \bar{b}b$

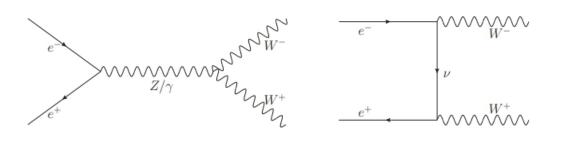
- Expected to be 20~50 times better than LEP measurements
 - With 95% purity working points, efficiency > 70% in CEPC (~30% for LEP)
 - 1D and 2D template fit for b tagging probability
- A global analysis method is developed to reduce impact from correlations between jet pairs. Method is under validation

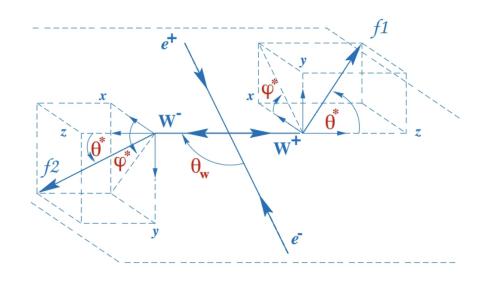
Error source	ΔR ^b (10 ⁻⁵)
Statistics	1
Tracking resolution	1
Charm modeling	3
Gluon spliting	1
Hemisphere correlation	6
Total	7

Eur. Phys. J. Plus 136, 1 (2021)

Search for aTGCs with ee→WW

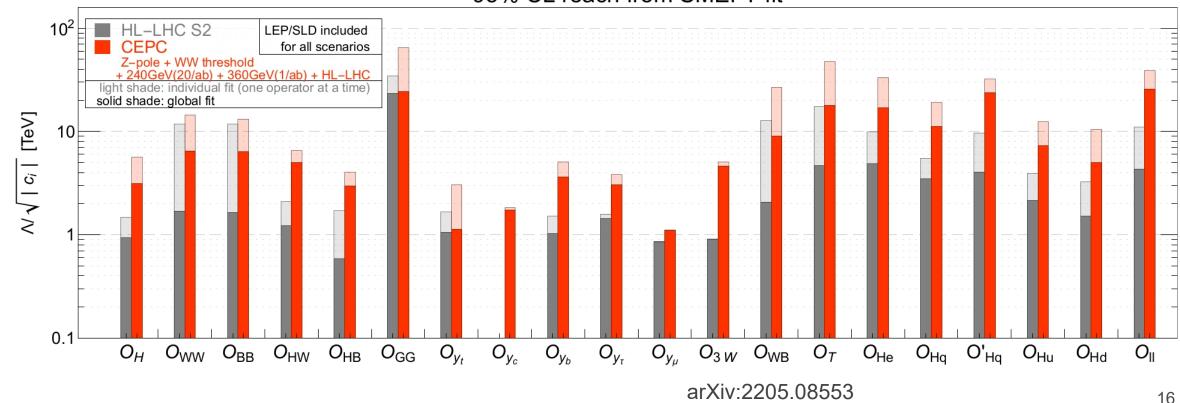

- Measurement of ee→WW process provides important constraints on various new physics contributions
- 7 parameters considered for further EFT studies




aTGC couplings

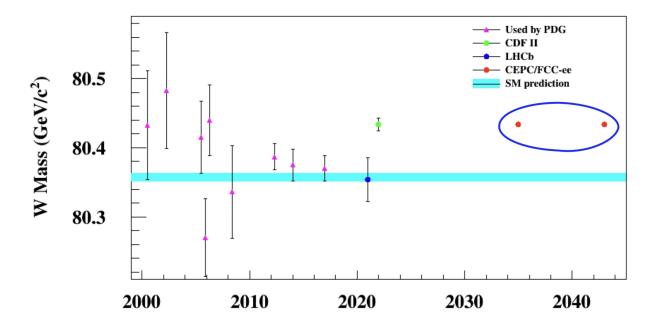
gauge couplings modifier

 The optimal observable method explore for this search (Z. Phys. C 62 (1994) 397–412)



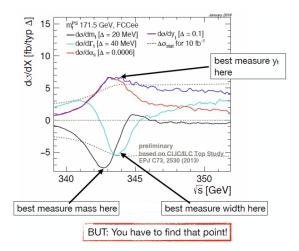
arXiv:1907.04311

 Combined measurement from EWK and Higgs properties to constrain higher dimension operators in SMEFT


$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

95% CL reach from SMEFT fit

- CEPC is designed to have 100km double ring accelerator
 - Multiple collision energy (from Z pole to ttbar threshold) proposed for various physics motivations
- Unprecedented luminosity provides chance to test the SM EWK sector in a more precise way
 - Expected 1-2 order of magnitude better than current precision
 - Would help to solve puzzles in current measurements


Backup

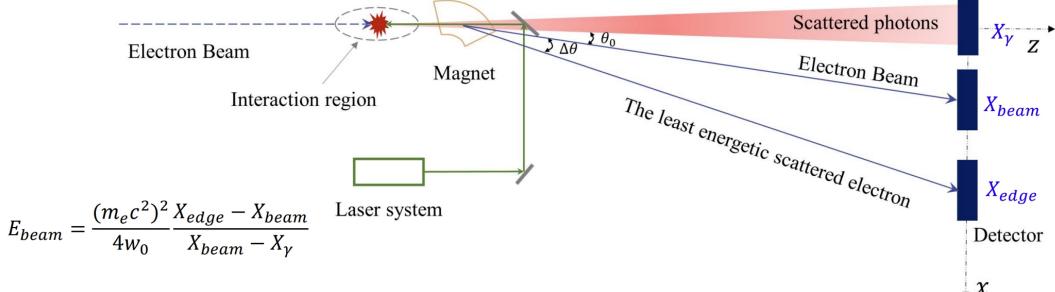
Motivation

- ttbar threshold scan is made against \sqrt{s} and cross section, which is direct observable.
- It brings measurements of such parameters:
 - Top mass
 - Top width
 - Top Yukawa coupling
 - α_s (strong coupling)

Eur. Phys. J. C (2013) 73:2530

Expected precision

• With the CEPC setup, limited to the total luminosity of 100 ${\rm fb^{-1}}$, top quark mass, width and α_s are measured individually at their optimal energy points.


Parameter of interest	Statistical uncertainty
m_t	9.06 MeV
$arGamma_t$	25.86 MeV
$lpha_{\scriptscriptstyle S}$	0.000394

CI	IC.	resu	lts:
\cup L	\sim	1030	ıw.

POI	Stat. uncertainty
m_t	34 MeV
Γ_{t}	
α_s	0.0009

Laser-Compton Method of calibration of beam energy

Method: Compton back-scattering combining a bending magnet

Electron beam		Nd:YAG Laser system	
Energy (GeV)	120	λ(nm)	532
N_e	15× 10 ¹⁰	Energy(J)	0.1
Collision angle α		~ 2.35 mrad	
Compton scattering cross section		202 mb	

• Compton back-scattering method used in BEPC by measuring the energy of scattered photons with accuracy is 2×10^{-5} .

https://doi.org/10.1016/j.nima.2011.08.050

• The technique is "non-destructive": $\sim 10^6$ Compton scattered particles in one collision.

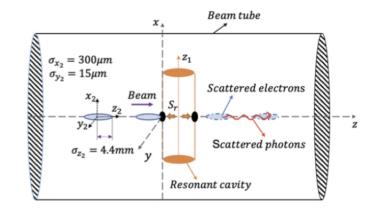
Comparison of the key parameters for different models in CEPC

	Higgs mode	Z mode	WW scan	$tar{t}$ scan	
E_{beam}/GeV	120	45	80	175	
X_{edge}/m	6.16352	9.29686	7.10343	5.57276	
X_{beam}/m	1.87935	5.00178	2.81903	1.28868	
$\delta X_{edge}/m$	2.6×10^{-5}				
$\delta X_{beam}/m$	6×10^{-8}				
$\delta E_{beam}/MeV$	1.0	0.3	0.6	1.8	

The statistical uncertainties of beam energy are not included here

<u>doi.10.1063/1.5132975</u>

Beam energy calibration


beam scattered photon postion detectors bending magnet with minimum energy 500m

With some proper corrections, the beam energy uncertainty of the Higgs mode is around 2 MeV.

Independent extraction device.

Separately detect the positions of scattered electrons, scattered photons and unscattered beams.

Microwave-beam Compton backscattering

Simple model of cavity and beam

Use synchrotron radiation lead wire.

Detection of the maximum energy of scattered photons by a HPGe detector.

If the beam energy is calibrated within 10MeV, it will be interesting and worth doing.