Measurements of quartic coupling and vector boson scattering in ATLAS

Aleksandr Petukhov (on behalf of the ATLAS collaboration)

ICHEP 2022

Introduction

- - $SU(2)_L \times U(1)_Y$ symmetry breaking \rightarrow allowed gauge couplings:
 - Triple: WWZ, $WW\gamma$;
 - Quartic: WWWW, WWZZ, $WW\gamma\gamma$, $WWZ\gamma$.
 - Multiboson processes are very rare at the LHC.
 - Sensitivity to BSM via anomalous quartic gauge couplings (aQCGs) evaluated with the model independent framework of Effective Field Theory [1]:

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^6 + \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j^8.$$

- At leading order \mathcal{O}_j^8 are the lowest dimension operators inducing only QGCs without triple gauge-boson vertices.
- Presented studies use ATLAS 2015-2018 pp collision data ($\sqrt{s}=$ 13 TeV, 139 fb^{-1}).

pp
ightarrow WWW

 $pp
ightarrow Z(
u
u)\gamma jj$

Previous studies: observation and aQGC limits for $Z(\ell\ell)\gamma jj$ [5], observation for $Z(\nu\nu)\gamma jj$ with $E_{\rm T}^{\gamma} \in [15;110]$ GeV [6]. **Final states:** photon with $E_{\rm T}^{\gamma} > 150$ GeV, $E_{\rm T}^{\rm miss}$ and ≥ 2 jets. **Main backgrounds:** QCD $Z(\nu\nu)\gamma jj$ and $W(\ell\nu)\gamma jj$. **Signal extraction:** BDT classifier, maximum-likelihood fit for signal $Z(\nu\nu)\gamma jj$ QCD and $W(\ell\nu)\gamma jj$ processes.

Results: $\sigma_{\text{fid}}^{Z\gamma jj} = 0.77_{-0.30}^{+0.34}$ fb with observed (expected) significance of 3.2σ (3.7σ) [7]. This result is combined with Ref. [6] to obtain observed (expected) significance of 6.3σ (6.8σ).

ATL √s = 10 ⁴ Back Post	LAS Preliminary = 13 TeV, 139 fb ⁻¹ ckground only fit st-Fit	 ✦ Data ₩(Iv)γjj QCD tr̃yjj Z(lĺ)γjj 	Z(vv̄)γjj EWK W(lv)γjj EWK γjj // Uncertainty	Z(v⊽)γjj QCD W(e⊽)jj, tjj, tijj Zj, jj •• Pre-Fit Bkgd.	1				
10 ³		·····		-				Value	
10 ²				•		POI	Current analysis	Ref. [6]	Combination
10	_					$\mu_{Z\gamma}$ ewk	0.78 ± 0.33	1.04 ± 0.23	0.96 ± 0.18

Previous studies: evidence, combined *VVV* production studies [2, 3]. **Final states:**

- $2\ell: e^{\pm}e^{\pm}/\mu^{\pm}e^{\pm}/\mu^{\pm}\mu^{\pm}$, $E_{\rm T}^{\rm miss}$, ≥ 2 jets.
- $3\ell: e^{\pm}e^{\pm}\mu^{\mp}/\mu^{\pm}\mu^{\pm}e^{\mp}$, $E_{\mathrm{T}}^{\mathrm{miss}}$

Main backgrounds: $WZ(\ell\nu\ell\ell)$ +jets, ℓ from hadron decays and $j \rightarrow \ell$ misidentification.

Signal extraction: 2 BDT classifiers for each channel, maximum-likelihood fit for signal and WZ+jets processes.

Results: $\sigma_{\text{fid}}^{WWW} = 820 \pm 100 \text{(stat.)} \pm 80 \text{(syst.)}$ fb with observed (expected) significance of 8.0σ (5.4σ) [4].

-D	1.21 ± 0.01	1.02 - 0.11	1.11 ± 0.21
	1.02 ± 0.22	1.01 ± 0.20	1.01 ± 0.13

High E_{T}^{γ} region is used to obtain both non-unitarised (presented) and unitarised limits on $\mathcal{O}_{T,j}^{8}$ and $\mathcal{O}_{M,j}^{8}$ [7].

Unitrisation is achieved using *clipping* method: setting the anomalous contribution to 0 for for $m_{Z\gamma} > E_c$ (estimated on particle level).

Coefficient	Observed limit, TeV^{-4}	Expected limit, TeV $^{-4}$
$f_{T,0}/\Lambda^4$	$[-9.4, 8.4] \times 10^{-2}$	$[-1.3, 1.2] \times 10^{-1}$
$f_{T,5}/\Lambda^4$	$[-8.8, 9.9] \times 10^{-2}$	$[-1.2, 1.3] \times 10^{-1}$
$f_{T,8}/\Lambda^4$	$[-5.9, 5.9] \times 10^{-2}$	$[-8.1, 8.0] \times 10^{-2}$
$f_{T,9}/\Lambda^4$	$[-1.3, 1.3] \times 10^{-1}$	$[-1.7, 1.7] \times 10^{-1}$
$f_{M,0}/\Lambda^4$	[-4.6, 4.6]	[-6.2, 6.2]
$f_{M,1}/\Lambda^4$	[-7.7, 7.7]	$[-1.0, 1.0] \times 10^1$
$f_{M,2}/\Lambda^4$	[-1.9, 1.9]	[-2.6, 2.6]

Conclusion

• First observation of the $pp \rightarrow WWW$ process.

- Results of cross-section measurements of both WWW and $Z(\nu\nu)\gamma jj$ production are in agreement with the Standard Model.
- $Z(\nu\nu)\gamma jj$ production is used to obtain the most stringent up do date limits on the $\mathcal{O}^8_{T,j}$ coefficients.

References:

- [1] Celine Degrande et al. In: Annals of Physics 335 (Aug. 2013), pp. 21–32. DOI: 10.1016/j.aop.2013.04.016.
- [2] ATLAS Collaboration. In: *Phys. Lett. B* 798 (Nov. 2019), p. 134913. DOI: 10.1016/j.physletb.2019.134913.
- [3] CMS Collaboration. In: *Phys. Rev. Lett.* 125.15 (Oct. 2020), p. 151802. DOI: 10.1103/PhysRevLett.125.151802.
- [4] ATLAS Collaboration. 2022. DOI: 10.48550/ARXIV.2201.13045. URL: https://arxiv.org/abs/2201.13045.
- [5] CMS Collaboration. In: Phys. Rev. D 104.7 (Oct. 2021), p. 072001. DOI: 10.1103/PhysRevD.104.072001.
- [6] ATLAS Collaboration. In: EPJC 82.2 (2022), pp. 1–41. DOI: 10.1140/epjc/s10052-021-09878-z.
- [7] ATLAS Collaboration. URL: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-59/.

