Global analyses of nuclear PDFs with HQ and u data

Michael Klasen

ITP, University of Münster

ICHEP 2022 Bologna, July 9, 2022

for the nCTEQ collaboration

Nuclear structure at high energies

Important current research topic:

- Understand fundamental q, g dynamics of p, n bound in nuclei
- Determine initial conditions in creation of new state of matter:
 Color-glass condensate (CGC) → Quark-gluon plasma (QGP)

Nuclear structure at high energies

Important current research topic:

- Understand fundamental q, g dynamics of p, n bound in nuclei
- Determine initial conditions in creation of new state of matter: Color-glass condensate (CGC) \rightarrow Quark-gluon plasma (QGP)

Knowns and (known) unknowns:

- Evolution of PDFs $f_{q,g}(x,Q^2)$ with squared energy Q^2 : Calculable at NLO and beyond through DGLAP equations
- Dependence on longitudinal momentum fraction x: QCD factorization theorem \rightarrow global fits to experimental data
- Fundamental dynamics of nuclear modifications: Parametrized, but remain to be fully understood

Nuclear structure at high energies

Important current research topic:

- Understand fundamental q, g dynamics of p, n bound in nuclei
- Determine initial conditions in creation of new state of matter:
 Color-glass condensate (CGC) → Quark-gluon plasma (QGP)

Knowns and (known) unknowns:

- Evolution of PDFs $f_{q,g}(x, Q^2)$ with squared energy Q^2 : Calculable at NLO and beyond through DGLAP equations
- Dependence on longitudinal momentum fraction x:
 QCD factorization theorem → global fits to experimental data
- Fundamental dynamics of nuclear modifications:
 Parametrized, but remain to be fully understood

nPDFs: nCTEQ, DSSZ, EPPS, HKN, KSASG, nNNPDF, TUJU

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x,Q^2) = \sum_i f_i^{(A,Z)}(x,Q^2) \otimes C_{2,i}(x,Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2.i}$ at NLO

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x,Q^2) = \sum_i f_i^{(A,Z)}(x,Q^2) \otimes C_{2,i}(x,Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A}f_i^{p/A}(x,Q^2) + \frac{A-Z}{A}f_i^{n/A}(x,Q^2)$$

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x,Q^2) = \sum_i f_i^{(A,Z)}(x,Q^2) \otimes C_{2,i}(x,Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A}f_i^{p/A}(x,Q^2) + \frac{A-Z}{A}f_i^{n/A}(x,Q^2)$$

DGLAP evolution equations:

$$\frac{\partial f_i(x, Q^2)}{\partial \log Q^2} = \int_x^1 \frac{dz}{z} P_{ij} \left(\frac{x}{z}, \alpha_s(Q^2)\right) f_j(z, Q^2)$$

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x,Q^2) = \sum_i f_i^{(A,Z)}(x,Q^2) \otimes C_{2,i}(x,Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A}f_i^{p/A}(x,Q^2) + \frac{A-Z}{A}f_i^{n/A}(x,Q^2)$$

DGLAP evolution equations:

$$\frac{\partial f_i(x, Q^2)}{\partial \log Q^2} = \int_x^1 \frac{dz}{z} P_{ij} \left(\frac{x}{z}, \alpha_s(Q^2)\right) f_j(z, Q^2)$$

Sum rules, but also isospin symmetry:

$$f_{d,u}^{n/A}(x,Q^2) = f_{u,d}^{p/A}(x,Q^2)$$

Nuclear modification factor

M. Arneodo, Phys. Rep. 240 (1994) 301; S. Malace, D. Gaskell, D. Higinbotham, Int. J. Mod. Phys. E23 (2014) 1430013

Definition:

$$f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2) f_i^p(x, Q)$$

Nuclear modification factor

M. Arneodo, Phys. Rep. 240 (1994) 301; S. Malace, D. Gaskell, D. Higinbotham, Int. J. Mod. Phys. E23 (2014) 1430013

Definition:

Regions:

- Shadowing: Surface nucleons absorb $q\bar{q}$ dipole, cast shadow
- Antishadowing: Imposed by momentum sum rule
- EMC effect: q_v suppression due to nuclear binding, pions, quark clusters, Nachtmann scaling, short-range correlations, ...
- Fermi motion: Nucleons move, $F_2^A = \int_x^A dz \ f_N(z) \ F_2^N(\frac{x}{z})$

K. Kovarik et al., Phys. Rev. D 93 (2016) 085037

Parametrization:

$$xf_i^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

 $c_k \rightarrow c_{k,0} + c_{k,1} (1-A^{-c_{k,2}})$

K. Kovarik et al., Phys. Rev. D 93 (2016) 085037

Parametrization:

$$xf_i^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

 $c_k \rightarrow c_{k,0} + c_{k,1} (1-A^{-c_{k,2}})$

Proton baseline: ∼ CTEQ6.1 (w/o nuclear data)

K. Kovarik et al., Phys. Rev. D 93 (2016) 085037

Parametrization:

$$xf_i^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

 $c_k \rightarrow c_{k,0} + c_{k,1} (1-A^{-c_{k,2}})$

Proton baseline: \sim CTEQ6.1 (w/o nuclear data)

Evolution:

DGLAP evolution of nuclear PDFs for each flavor/gluon

K. Kovarik et al., Phys. Rev. D 93 (2016) 085037

Parametrization:

$$xf_i^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

 $c_k \rightarrow c_{k,0} + c_{k,1} (1-A^{-c_{k,2}})$

Proton baseline: \sim CTEQ6.1 (w/o nuclear data)

Evolution:

DGLAP evolution of nuclear PDFs for each flavor/gluon

Global fit:

- Fixed target data: DIS A/D, A/A'; DY pA/pA'
- Collider data: PHENIX/STAR π^0 ; LHC data? ν data?

Heavy quark and quarkonium data from the LHC

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Methodology for heavy quark/quarkonium production

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Data-driven approach (Crystal Ball function):

$$\overline{\left|\mathcal{A}_{\mathsf{gg}\to\mathcal{Q}+X}\right|^{2}} = \frac{\lambda^{2}\kappa\hat{\mathsf{s}}}{M_{\mathcal{Q}}^{2}} e^{\mathsf{a}|\mathsf{y}|} \times \begin{cases} e^{-\kappa} \frac{\rho_{T}^{2}}{M_{\mathcal{Q}}^{2}} & \text{if } \mathsf{p}_{T} \leq \langle \mathsf{p}_{T} \rangle \\ e^{-\kappa} \frac{\langle \mathsf{p}_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}} & \left(1 + \frac{\kappa}{n} \frac{\rho_{T}^{2} - \langle \mathsf{p}_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}}\right)^{-n} & \text{if } \mathsf{p}_{T} > \langle \mathsf{p}_{T} \rangle \end{cases}$$

- Originally proposed for J/Ψ pairs and double parton scattering [C.H. Kom, A. Kulesza, J. Stirling, PRL 107 (2011) 082002]
- Impact on nPDFs demonstrated with reweighting studies
 [A. Kusina, J.P. Lansberg, I. Schienbein, H.S. Shao, PRL 121 (2018) 052004 and PRD 104 (2021) 014010]
- New rapidity dependence allows to cover also LHCb data

Methodology for heavy quark/quarkonium production

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Data-driven approach (Crystal Ball function):

$$\overline{\left|\mathcal{A}_{gg\rightarrow\mathcal{Q}+X}\right|^{2}} = \frac{\lambda^{2}\kappa\hat{s}}{M_{\mathcal{Q}}^{2}}e^{\mathbf{a}|\mathbf{y}|} \times \begin{cases} e^{-\kappa}\frac{\rho_{T}^{2}}{M_{\mathcal{Q}}^{2}} & \text{if } \rho_{T} \leq \langle \rho_{T} \rangle \\ e^{-\kappa}\frac{\langle \rho_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}} \left(1 + \frac{\kappa}{n}\frac{\rho_{T}^{2} - \langle \rho_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}}\right)^{-n} & \text{if } \rho_{T} > \langle \rho_{T} \rangle \end{cases}$$

- Originally proposed for J/Ψ pairs and double parton scattering [C.H. Kom, A. Kulesza, J. Stirling, PRL 107 (2011) 082002]
- Impact on nPDFs demonstrated with reweighting studies
 [A. Kusina, J.P. Lansberg, I. Schienbein, H.S. Shao, PRL 121 (2018) 052004 and PRD 104 (2021) 014010]
- New rapidity dependence allows to cover also LHCb data

Choice of proton PDF (nCTEQ15) and factorization scales:

		D^0	J/ψ	$B \rightarrow J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$
μ	ι_0^2	$4M_D^2 + p_{T,D}^2$	$M_{J/\psi}^2 + p_{T,J/\psi}^2$	$4M_B^2 + \frac{M_B^2}{M_{J/\psi}^2} p_{T,J/\psi}^2$	$M_{\Upsilon(1S)}^2 + p_{T,\Upsilon(1S)}^2$	$M_{\psi(2S)}^2 + p_{T,\psi(2S)}^2$	$4M_B^2 + \frac{M_B^2}{M_{\psi(2S)}^2} p_{T,\psi(2S)}^2$

Fit to pp data and validation with NLO predictions

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Crystal Ball fit parameters: Cut data with $p_T < 3$ GeV and |y| > 4

	D^0	J/ψ	$B \to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$	
κ	0.33457	0.47892	0.15488	0.94524	0.21589	0.45273	
λ	1.82596	0.30379	0.12137	0.06562	0.07528	0.13852	
$\langle p_T \rangle$	2.40097	5.29310	-7.65026	8.63780	8.98819	7.80526	
n	2.00076	2.17366	1.55538	1.93239	1.07203	1.64797	
a	-0.03295	0.02816	-0.08083	0.22389	-0.10614	0.06179	
$N_{ m points}$	34	501		375	55		
χ^2/N_{dof}	0.25	0	.88	0.92	0.77		

Fit to pp data and validation with NLO predictions

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Crystal Ball fit parameters: Cut data with $p_T < 3$ GeV and |y| > 4

	D^0	J/ψ	$B\to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$
κ	0.33457	0.47892	0.15488	0.94524	0.21589	0.45273
λ	1.82596	0.30379	0.12137	0.06562	0.07528	0.13852
$\langle p_T \rangle$	$\langle p_T \rangle$ 2.40097 5.29310		-7.65026	-7.65026 8.63780		7.80526
n	2.00076	2.17366	1.55538	1.93239	1.07203	1.64797
a	-0.03295	0.02816 -0.08083		0.22389	-0.10614	0.06179
$N_{ m points}$	34	501		375	55	
χ^2/N_{dof}	0.25	0.88		0.92	0.77	

Heavy quarkonia in NRQCD:

Open heavy quarks in GM-VFNS:

[M. Butenschön, B. Kniehl, PRL 106 (2011) 022003]

Cycle Bail Fe

Cycle

Impact of heavy quark and quarkonium data

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Cut D^0 data with $p_T > 15$ GeV (no p), 2 high- p_T LHCb Υ points

Impact of heavy quark and quarkonium data

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Cut D^0 data with $p_T > 15$ GeV (no p), 2 high- p_T LHCb Υ points

Impact on lead PDFs:

[nCTEQ15 (χ^2 /dof=1.23), WZ (0.90), WZ+SIH (0.92), HQ (0.86)]

Compatibility of neutrino DIS data

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

Are CC DIS data compatible with NC DIS and DY data?

- No (in particular high-precision NuTeV data)
 - [K. Kovarik, I. Schienbein et al., PRD 77 (2008) 054013, PRL 106 (2011) 122301; also prel. HKN]
- Yes (if taken without correlations, normalized)

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Compatibility of neutrino DIS data

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

Are CC DIS data compatible with NC DIS and DY data?

- No (in particular high-precision NuTeV data)
 - [K. Kovarik, I. Schienbein et al., PRD 77 (2008) 054013, PRL 106 (2011) 122301; also prel. HKN]
- Yes (if taken without correlations, normalized)

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Neutrino data sets:

Data set	Nucleus	$E_{\nu/\bar{\nu}}(\text{GeV})$	#pts	Corr.sys.	
CDHSW ν	Fe	23 - 188	465	No	
CDHSW $\bar{\nu}$	re	23 - 100	464	110	
CCFR ν	Fe	35 - 340	1109	No	
CCFR $\bar{\nu}$	re	35 - 340	1098	NO	
NuTeV ν	Fe	35 - 340	1170	Yes	
NuTeV $\bar{\nu}$	re	35 - 340	966	ies	
Chorus ν	Pb	25 - 170	412	Yes	
Chorus $\bar{\nu}$	1 0	20 - 170	412	res	
CCFR dimuon ν	Fe	110 - 333	40	No	
CCFR dimuon $\bar{\nu}$	re	87 - 266	38	NO	
NuTeV dimuon ν	Fe	90 - 245	38	No	
NuTeV dimuon $\bar{\nu}$	ге	79 - 222	34	110	

Internal consistency:

New baseline nCTEQ15WZSIHdeut

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

Improvements:

- Remove experimental isoscalar corrections $\rightarrow u/d$ separation [E.P. Segarra, MK et al., PRD 103 (2021) 114015]
- Deuteron correction from CJ15 $o F_2^{
 m D}=F_2^{p,nCTEQ15} imes rac{F_2^{
 m D,CJ}}{F_2^{p,CJ}}$ [A. Accardi et al., PRD 93 (2016) 114017]

Influences description of all NC DIS data (F_2^A/F_2^D) .

• Repeat nCTEQ15WZ+SIH analysis (better $\chi^2/dof=0.782$)

Comparison to all neutrino data fit

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

Normalization uncertainties: $\chi_r^2(a,r) = \sum_{i,j} (D_i - rT_i) C_{ij}^{-1} (D_j - rT_j) + \frac{(1-r)^2}{\sigma_{norm}^2}$ Correlations included, gluon parameters fixed.

Compatibility of neutrino DIS data (rev.)

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

For each experiment:
$$S_E(\chi_E^2(N_E), N_E) = \sqrt{2\chi_E^2(N_E)} - \sqrt{2N_E - 1}$$

Compatibility of neutrino DIS data (rev.)

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

For each experiment:
$$S_E(\chi_E^2(N_E), N_E) = \sqrt{2\chi_E^2(N_E)} - \sqrt{2N_E - 1}$$

Compatibility assessment:

Analysis name	χ_S^2/N	χ_S^2/pt	χ_S^2/N	χ_S^2/pt	$\Delta \chi_S^2$	$\Delta\chi_S^2$	p_S/p_S
nCTEQ15WZSIHdeut	735/940	0.78	-	-	0	-	0.500 / -
DimuChorus	-	-	1059/974	1.09	-	0	- / 0.500
BaseChorus	737/940	0.78	969/824	1.18	2	-	0.530 / -
BaseCDHSW	778/940	0.83	584/929	0.63	43	-	0.895 / -
BaseCCFR	815/940	0.87	2119/2207	0.96	80	-	0.989 / -
BaseNuTeV	807/940	0.86	3049/2136	1.43	72	-	0.981 / -
BaseNuTeVU	787/940	0.84	1984/2136	0.93	52	-	0.933 / -
BaseDimuNeuU	861/940	0.92	5569/5689	0.98	126	-	0.99978 / -
BaseDimuNeuX	781/940	0.83	5032/4644	1.08	46	-	0.908 / -
BaseDimuChorus	740/940	0.79	1117/974	1.15	5	58	0.559 / 0.885

Consistent global fits with neutrino DIS data?

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

BaseDimuNeuU:

- Exclude NuTeV correlations
- Unpublished, may have underestimated systematic uncertainty
- Neutrino data better described, but tension with NC remains

Consistent global fits with neutrino DIS data?

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

BaseDimuNeuU:

- Exclude NuTeV correlations
- Unpublished, may have underestimated systematic uncertainty
- Neutrino data better described, but tension with NC remains

BaseDimuNeuX:

- Exclude data at x < 0.1
- Nuclear shadowing might be different in CC and NC
- Barely consistent with baseline ($\Delta \chi^2 = 46 > 45$)

Consistent global fits with neutrino DIS data?

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

BaseDimuNeuU:

- Exclude NuTeV correlations
- Unpublished, may have underestimated systematic uncertainty
- Neutrino data better described, but tension with NC remains

BaseDimuNeuX:

- Exclude data at x < 0.1
- Nuclear shadowing might be different in CC and NC
- Barely consistent with baseline ($\Delta \chi^2 = 46 > 45$)

BaseDimuChorus:

- Include only dimuon and Chorus data
- All data well described

Impact of neutrino DIS data

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

Baseline:

Impact of neutrino DIS data

K.F. Muzakka, MK et al. [nCTEQ Coll.], submitted to Phys. Rev. D [2204.13157]

Baseline:

Impact on lead PDFs:

Conclusions and Outlook

Wealth of LHC heavy quark and quarkonium data:

- Well described by data-driven approach
- Validated with NLO NRQCD and GM-VFNS
- Constrain gluon down to $x = 10^{-5}$, very small uncertainty

Wealth of LHC heavy quark and quarkonium data:

Well described by data-driven approach

- Validated with NLO NRQCD and GM-VFNS
- Constrain gluon down to $x = 10^{-5}$, very small uncertainty

Wealth of fixed-target neutrino data (high statistics, older):

- Long-standing debate about compatibility with NC and DY
- Reanalysis with improved baseline, three compatibility criteria
- Three proposed solutions, only one (DimuChorus) really works
- Neutrino data constrain in particular the strange quark

Conclusions and Outlook

Wealth of LHC heavy quark and quarkonium data:

- Well described by data-driven approach
- Validated with NLO NRQCD and GM-VFNS
- Constrain gluon down to $x = 10^{-5}$, very small uncertainty

Wealth of fixed-target neutrino data (high statistics, older):

- Long-standing debate about compatibility with NC and DY
- Reanalysis with improved baseline, three compatibility criteria
- Three proposed solutions, only one (DimuChorus) really works
- Neutrino data constrain in particular the strange quark

Outlook:

- Many individual nCTEQ analyses (also HIX, more coming)
- ullet Must and will be combined ightarrow nCTEQ22 release this year
- More LHC data (jets, photons), update proton, NNLO etc.