

Reference: <u>CMS-PAS-TOP-21-010</u>

Inclusive and differential cross-sections measurements in the single top tW eµ channel with CMS

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Alejandro Soto Rodríguez (on behalf of the CMS collaboration)

Motivation

The tW process includes the most massive 0 elementary particle of the SM, the top quark $\rightarrow m_t = 172.5 \text{ GeV} (PTEP 2020 (2020) 8).$ It has the second biggest cross section of single top 0 production at the LHC.

Challenge: background dominates signal!

Baseline event selection

- The two first leading leptons must be an electron and a muon of opposite charge.
- Leading lepton $p_T > 25$ GeV.
- The invariant mass of the dilepton pair must be greater than 20 GeV.

 \circ Interference between tt and tW at NLO in QCD.

- Two schemes are defined to avoid double counting:
 - **DR**: all doubly resonant diagrams are removed from the ME calculation.
 - **DS**: a gauge invariant term is introduced in the ME calculation that locally cancels the doubly resonant diagrams.

Measurement performed using the full dataset recorded with the CMS detector during Run 2 at \sqrt{s} = 13 TeV in pp collisions

Inclusive cross section measurement

Different regions for the inclusive and differential measurements are defined based on the number of **jets** and **b-tagged jets**.

Methodology

- BDT used to disciminate tW from tt. • The **2j2b** region is used as a tt control region.
- To extract the signal, a ML-fit is performed using the two BDT output and the subleading jet p_T in the 2j2b region.

Results

• The measured cross section is: $\sigma_{tW} = 79.2 \pm 0.8 \text{ (stat)} \pm \frac{7.0}{7.2} \text{ (syst)} \pm 1.1 \text{ (lumi) pb}$

 Measurement dominated by systematic uncertainties being the jet energy corrections, the matrix element μ_R and μ_F scales, and the modelling of the final state radiation for tW and tt, the most important ones.

aNNLO(QCD): $\sigma_{tW}^{SM} = 71.7 \pm 1.8 (scale) \pm 3.4 (PDF) \text{ pb} (Pos DIS2015 (2015) 170)$ aN³LO(QCD): $\sigma_{tW}^{SM} = 79.5 \pm 1.9_{1.8}$ (scale) $\pm 1.4_{1.4}^{2.0}$ (PDF) pb (JHEP 2021, 278 (2021))

Differential cross section measurements

Methodology

- The **1j1b** region with a veto on the number of loose jets is chosen as the signal region. • The differential cross sections are measured as a function of the leading lepton $p_{\rm T}$, jet $p_{\rm T}$, $\Delta \varphi(e^{\pm}, \mu^{\mp})$, $p_z(e^{\pm}, \mu^{\mp}, j)$, $m(e^{\pm},\mu^{\mp},j)$ and $m_{T}(e^{\pm},\mu^{\mp},j,p_{T}^{miss})$. Signal extraction and unfolding to a fiducial region in particle level (defined to mimic the signal region) are done at the same
 - time in a maximum likelihood fit.
- The results are normalised to the fiducial cross section.

Jets with $p_T \in [20,30]$ GeV

Results

 Overall agreement between data and expectations within uncertainties. Compatible results between the DR and DS schemes.