

ALMA MATER STUDIORUM Università di Bologna

Leonardo Lunerti⁺ on behalf of CMS Collaboration

⁺Università and INFN Bologna

ICHEP2022: 41st International Conference on High Energy Physics

Introduction

- Many doubly-heavy tetraquarks and several pentaquarks candidates are known: their theoretical interpretation remain contested.
- Standard model QCD allows the existence of more complex structures other than mesons and baryons, such as four- or five-quarks hadrons (tetraquarks or pentaquarks) states and states with active gluonic degrees of freedom (hybrids) and even guon-only states (glueballs) [1].
- **Beyond standard model interpretations** of the observed **exotic hadrons** states are avaliable [2,3].
 - In 2020 LHCb Collaboration observed a peak in the $J/\psi J/\psi$ invariant mass spectrum, designated as X(6900) which has been interpreted as an all-charm tetraquark [4].
 - LHCb's mass spectrum shows a **broad excess of events**, just above the kinematic threshold, that backgound models do not account for
 - The X(6900) peak is compelling but a proper understanding of the $J/\psi J/\psi$ mass spectrum remains uncertain.
 - The same measurement performed by **CMS** could profit of a **higher sensitivity** since the resonance has been shown to be produced at higher p_T .

2

Selection optimization

- Fixed prior to look at $m(J/\psi$ J/ψ) < 7.8 GeV region
- Based on past CMS analyses [6]
- Cross check performed maximizing Punzi figure of merit using signal meson + datadetermined backgrounds yielded similar selection

$m_{(\mu^+\mu^-)_4}^{3.2}$ GeV 135 fb⁻¹ (13 TeV) -J/ψ₁J/ψ₂ $Bkg_1 J/\psi_2$ –J/ψ₁Bkg₂ — Bkg₁Bkg₂

Trigger event selection

Two-level **trigger** system requiring a μ candidate + $\mu^+\mu^-$ pair

2016 (36.3 fb⁻¹)

- $|\eta(\mu)| < 2.5$
- $\mu^+\mu^-$ closest approach < 0.5 cm
- $\mu^+\mu^-\chi^2$ vertex fit probability < 0.5% **2017-2018** (98.6 fb⁻¹)
- Same 2016 criteria
- 2.95 < $m(\mu^+\mu^-)$ < 3.25 GeV
- $p_T(\mu^{\pm}) > 3.5 \text{ GeV}$

Offline selection

Muons

- Pass *soft identification* [5]
- $p_T(\mu) > 2 \text{ GeV and } |\eta(\mu)| < 2.4$

J/ψ vertex

- $p_T(\mu^+\mu^-) > 3.5 \text{ GeV}$
- Vertex fit probability > 0.5%
- $m(\mu^+\mu^-)$ constrained to $m_{I/\psi}^{PDG}$

$J/\psi J/\psi$ vertex

- $\mu^+\mu^-\mu^+\mu^-$ vertex fit probability > 0.5% - $J/\psi J/\psi$ vertex fit probability >0.1% Best muon permutation based on massuncertainty-weighted distance in the 2D $m(\mu^+\mu^-) - m_{I/\psi}$ plane

Fit strategy

Background shapes based on MC simulations:

Nonresonant single-parton scattering (NRSPS)

Fit model building:

• Perform a sequence of fits adding new features until a reasonable description of data is obtained

CMS data with LHCb fit models

Model I:

- Background modeled using NRSPS+NRDPS shapes
- Signal modeled using 3 Breit-Wigner functions: BW0 and BW1 to model X(6300) and X(6500)structures and BW2 to model X(6900) resonance **Results:** • $M[BW2] = 6927 \pm 10 \text{ MeV}; \Gamma[BW2] = 117 \pm 10 \text{ MeV}; \Gamma[BW2] = 10 \text{ MeV}; \Gamma$ 24 MeV \rightarrow consistent with LHCb • Fit probability $\chi^2 = 1.2 \times 10^{-4}$ for mass region below 7.5 GeV: the model fails to describe the dip at 6750 MeV and the structure at 7200 MeV. • The fit fails in describing the data as reported also by LHCb.

Model II:

- Background modeled using NRSPS+NRDPS shapes
- Signal modeled using a Breit-Wigner to model the X(6900) resonance and a Breit-Wigner + interference term to model the dip at 6700 MeV. **Results:**

where $x_0 = 2M_{I/\psi}$

Nonresonant double-parton scattering (NRDPS)

 $f_{DPS}(x) = \sqrt{x_t} \times \exp(-ax_t) \times (p_0 + p_1x_t + p_2x_t^2)$

where $x_t = x - x_0$ and $x_0 = 2M_{I/\psi}$

- Starting from NRSPS+NRDPS+BW0 model
- New features are added one at the time if their local significance exceeds 3 standard deviations
- Repeat until no additional structures above 3 standard deviations are found

Signal shapes are relativistic Breit-Wigner functions convolved with **Gaussian resolution functions** (BW):

- **BW0** \rightarrow threshold enhancement
- **BW1** \rightarrow structure at $\simeq 6600 \text{ MeV}$
- **BW2** \rightarrow X(6900)
- **BW3** \rightarrow structure at \simeq 7200 MeV

Summary

The $J/\psi J/\psi$ mass spectrum has been analyzed using pp collision at $\sqrt{s} = 13$ TeV recorded by the CMS experiment in the 2016-2018 data-taking period corresponding to an integrated luminosity of 135 fb⁻¹

Three resonance-like structures exceeding 3 standard deviations have been observed

	Mass (MeV)	Width (MeV)	Local significance
BW1	$6552 \pm 10 \pm 12$	$124 \pm 29 \pm 34$	$> 5.7 \sigma$
BW2	6927 <u>+</u> 9 <u>+</u> 5	$122 \pm 22 \pm 19$	> 9.4 <i>o</i>
BW3	7287 <u>+</u> 19 <u>+</u> 5	95 <u>+</u> 46 <u>+</u> 20	> 4.1 <i>o</i>

- Better description of the dip at 6700 MeV and fit results compatible with LHCb
- Fit probability $\chi^2 = 0.84 \times 10^{-4}$ for mass region below 7.5 GeV: the region around 6550 MeV is now poorly described.
- The discrepancies around peak/dip structure at 7200 MeV also contribute to a poor fit result.

The fit model provides a good description of the data, however:

- Fit probability $\chi^2 = 0.01$ for mass region below 7.5 GeV \rightarrow the model does not account for the dips around 6750 and 7150 MeV
- Models **incorporating interference** are an important class to explore
- Including more resonances in the fit to account for the dips in non-interference models is also forseen

Bibliography

[1] N. Brambilla et al., "The XYZ states: experimental and theoretical status and perspectives", Phys. Rept. 873 (2020) 1–154, doi:10.1016/j.physrep.2020.05.001, arXiv:1907.07583. [2] M. Nielsen et al., "Supersymmetry in the Double-Heavy Hadronic Spectrum", Phys. Rev. D 98 (2018), no. 3, 034002, doi:10.1103/PhysRevD.98.034002, arXiv:1805.11567. [3] M. Nielsen and S. J. Brodsky, "Hadronic superpartners from a superconformal and supersymmetric algebra", Phys. Rev. D 97 (2018), no. 11, 114001, doi:10.1103/PhysRevD.97.114001, arXiv:1802.09652. [4] LHCb Collaboration, "Observation of structure in the J/ ψ -pair mass spectrum", Sci. Bull. 65 (2020) 1983, doi:10.1016/j.scib.2020.08.032, arXiv:2006.16957. [5] CMS Collaboration, "Performance of CMS muon reconstruction in pp collision events at $v_s = 7$ TeV", JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071. [6] CMS Collaboration, "Measurement of Prompt J/ ψ Pair Production in pp Collisions at $\sqrt{s} = 7$ TeV", JHEP **09** (2014) 094, doi:10.1007/JHEP09(2014)094, arXiv:1406.0484.