

Determination of the strongcoupling constant from the Z-boson transverse-momentum distribution

e-Print:2203.05394

Stefano Camarda Giancarlo Ferrera Matthias Schott ICHEP Bologna 6-13 July 2022

The strong-coupling strength $\alpha_s(m_z)$

- Single free parameter of QCD in the $m_q \rightarrow 0$ limit
- Conventionally determined at the reference scale Q = m_z
- Decreases ("runs") as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{-1}$
- Impacts physics at the Planck scale: EW vacuum stability, GUT
- Is among the dominant uncertainties of several precision measurements at colliders
 - Higgs couplings at the LHC
 - EW precision observables at e+e- colliders

World average: $\alpha_s(m_z) = 0.1179 \pm 0.0009$

Measure $\alpha_s(m_z)$ from the Z p_T distribution

- The recoil of Z bosons produced in hadron collisions is mostly due to QCD initial-state radiation
- The Sudakov factor is responsible for the existence of a peak in the Z-boson p_T distribution, at values of approximately 4 GeV
- The position of the peak is sensitive to $\alpha_s(m_z)$
- Methodology first tested in proton-antiproton collisions (Tevatron), application to protonproton (LHC) is more challenging, but could lead to substantially smaller uncertainties

Desirable features for a measurement of $\alpha_s(m_z)$

Semi-inclusive observables may take benefits from both categories

Measure $\alpha_s(m_z)$ from the Z p_T distribution

- In particular the Z p_T distribution benefits from:
 - Very precise measurements and high experimental sensitivity to α_s(m_z)
 - High order theory predictions based on analytic qt-resummation

CDF measurement of Z-boson p_T

- The CDF measurement of Z-boson p_T in full-lepton phase space is an ideal candidate for the determination of $\alpha_s(m_z)$ with analytic predictions
- The measurement is extrapolated to full-lepton phase space with the angular coefficients method

 \rightarrow allows fast analytic predictions and avoid theoretical uncertainties on Z polarisation

pp collisions

 $\begin{array}{l} b\overline{b} \rightarrow Z: \ 0.4\% \\ c\overline{c} \rightarrow Z: \ 1.3\% \end{array}$

 \rightarrow reduced contribution from heavy-flavourinitiated production compared to pp collisions

- Measurement performed in the electron channel, with CC, CF, FF kinematic configurations
 - \rightarrow small extrapolation to full rapidity range:

 $|\eta^{e}| < 2.8 \rightarrow y_{max} \sim 3.1$

Low pileup data with good electron resolution, allows fine p_T bins (0.5 GeV) with relatively small bin-to-bin correlations

$$\frac{d\sigma}{dpdq} = \frac{d^3\sigma}{dp_T dy dm} \sum_i A_i(y, p_T, m) P_i(\cos\theta, \phi)$$

Theory predictions

- N3LL accuracy in the Sudakov, N3LO accuracy in the hard coefficient H
- NNLO accuracy in the matching to fixed order at large $p_T \xrightarrow{g}_{P}$ \rightarrow missing O(α_s^3) terms have permille or subpermille effects g^{P}_{P} in the region $p_T < 30$ GeV
- Consistent 4-loop running of α_{s} in all parts of the calculation
- PDFs evaluated at the hard scale and evolved with FFN 5F
- Non-perturbative effects modelled with a Gaussian Sudakov form factor governed by a parameter g

Sensitivity to $\alpha_s(m_Z)$

- The sensitivity of the Z-boson p_T distribution to α_s(m_z) mainly comes from the position of the Sudakov peak
- Typical recoil scale:
 <p_T> ~ 10 GeV

- The sensitivity of the Z-boson p_T distribution to the non-perturbative parameter g also comes from the position of the Sudakov peak
- The scale of the non-perturbative smearing is given by the primordial <k_T>: g ~ 0.6 GeV² → <k_T> ~ 1.5 GeV
- $\rightarrow\,$ Possible to disentangle $\alpha_{s},$ and g, thanks to their different scale

Stefano Camarda

Methodology for the $\alpha_s(m_z)$ determination

DYTurbo interfaced to xFitter

Eur.Phys.J.C 75 (2015) 7, 304 https://www.xfitter.org/xFitter/

- Evaluate $\chi^2(\alpha_s)$ with α_s variations as provided in LHAPDF
- Include experimental ($\beta_{j,exp}$) and PDF ($\beta_{k,th}$) uncertainties in the χ^2

8

Fit results

	NNPDF4.0	CT18	CT18Z	MSHT20	HERAPDF2.0	ABMP16
α _s (m _z)	0.1187	0.1186	0.1192	0.1178	0.1185	0.1178
PDF unc.	0.0004	0.0006	0.0005	0.0004	0.0004	0.0002
g (GeV ²)	0.66	0.69	0.69	0.72	0.74	0.72
χ²/dof	41/53	40/53	40/53	40/53	40/53	41/53

 α_{s} = 0.1185 ± 0.0007 (PDF envelope)

Fit range stability

- Remarkable stability with respect to variations of the fit range
- Confirms negligible effect of missing $O(\alpha_s^3)$ corrections in the matching to fixed order, and goodness of the NP model

	р _т < .		$20 \text{ GeV} p_{T} < 30 \text{ GeV}$		ev .	p _⊤ < 40 GeV	
na	α _s (m _z) 0.118		6 0.1187			0.1186	
to fixed	fit unc.	0.000	9	0.0008		0.0008	
odel	χ²/dof	27/38		41/53		47/58	
	$0 < p_T < 30 \text{ GeV}$		$2 < p_T < 30 \text{ GeV}$		4 <	p⊤ < 30 GeV	
α₅ (m z)	0.1187		0.1187		0.1185		
fit unc.	0.0008		0.0008		0.0015		
χ²/dof	41/53		41/49		38/4	5	

Stefano Camarda

Result for $\alpha_s(m_z)$ from the Z p_T distribution

α_s = 0.1185 +0.0014 -0.0015

Breakdown of uncertainties

	δα _s (m _z ,+)	δα _s (m _z ,–)
Exp. unc.	+0.0007	-0.0007
PDF unc.	+0.0008	-0.0008
Scale var.	+0.0007	-0.0010
Theory unc.	+0.0007	-0.0004

- Measurement in agreement with the world average
- Uncertainty comparable to other determinations
- 1.2% rel. unc.: best collider measurement, second after lattice QCD average
- First N3LO α_s(m_z) at hadron colliders

- Alternative fits with different prescriptions for the Landau pole $\delta \alpha_s = +0.0006 0.0004$ $\delta g = +0.21 - 0.13$
- Alternative fit with VFN PDF evolution $\delta \alpha_s = -0.0002$

arXiv:2203.05394

$\alpha_s(m_z)$ from the Z p_T distribution at the LHC

- LHC measurement of Z p_T are significantly more precise than Tevatron:
 - ATLAS 7 TeV data yields 0.2% experimental uncertainties on α_s (estimated from MC tuning)
 - 3 times smaller uncertainties with 8 TeV ATLAS/CMS
 - $\bullet\,$ Likely to reach a few 10^-4 relative uncertainty on $\alpha_{_{\rm S}}$ with full Run 2 LHC data sample

- Several additional theory challenges at the LHC
 - Significant heavy flavour initiated production
 - Small-x resummation
 - Larger gluon PDF uncertainty

- The strong-coupling constant is a fundamental parameter of the SM, improving its knowledge has far-reaching implications in the quest for new phenomena
- A large variety of α_s(m_z) determinations are currently being pursued, leading to a much improved overall understanding of QCD. Some of the most clean determinations are likely to reach subpercent uncertainty in the near future
- A new methodology based on the Z p_T distribution provided a measurement of α_s(m_z) with precision comparable to other determinations. The same methodology applied to LHC data has the potential to provide an even more precise determination

BACKUP

The strong-coupling constant - Motivation

ggF cross section at N ³ LO QCD							
\sqrt{s}	σ	$\delta(\text{theory})$	$\delta(extsf{PDF})$	$\delta(lpha_s)$			
13 TeV	48.61 pb	$^{+2.08\text{pb}}_{-3.15\text{pb}} \begin{pmatrix} +4.27\%\\ -6.49\% \end{pmatrix}$	$\pm 0.89 { m pb} (\pm 1.85\%)$	$^{+1.24 pb}_{-1.26 pb} \left(^{+2.59\%}_{-2.62\%}\right)$			
14 TeV	54.72 pb	+2.35 pb $(+4.28%)$ $-3.54 pb$ $(-6.46%)$	$\pm 1.00 { m pb} (\pm 1.85\%)$	$^{+1.40\text{pb}}_{-1.41\text{pb}}$ $\begin{pmatrix} +2.60\%\\ -2.62\% \end{pmatrix}$			
27 TeV	146.65 pb	+6.65 pb +4.53% -9.44 pb -6.43%	$\pm 2.81 \mathrm{pb} (\pm 1.95\%)$	$+3.88 \text{pb} \left(+2.69\% -2.64\%\right)$			
[HE/HL-LHC Yellow Report '19]							

- The strong-coupling constant is among the dominant uncertainties of several precision measurements at colliders
 - Higgs couplings at the LHC
 - EWPO at e+e- colliders

Mehar mass orro	r hudget (from	threshold scan)							
Wisbal Mass end				Process	σ (pb)	$\delta \alpha_s(\%)$	PD	$\mathbf{F} + \alpha_s(\%)$	Scale(%)
$(\delta M_t^{\rm SD-low})^{\rm exp}$	$(\delta M_t^{\rm SD-1})$	$(\delta \overline{m}_t(\overline{m}_t))^{\text{conversion}}$	$\left(\left(\delta \overline{m}_t(\overline{m}_t)\right)^{\alpha_s}\right)$	ooH	49.87	+3.7	-	6.2 +7.4	-2.61 ± 0.32
40 MeV	50 MeV	7 – 23 MeV	70 MeV	88**	12.07	± 5.7	1.00	0.2 17.1	2.01 10.52
⇒ improvemer	nt in α_s cruci	al	$\delta \alpha_*(M_*) = 0.001$	ttH	0.611	± 3.0		\pm 8.9	-9.3 + 5.9
Quantity	FCC-ee	future param.ur	nc. Main source	Partial v	vidth	intr. QC	D	para. m_q	para. α_s
Γ_Z [MeV]	0.1	0.1	$\delta \alpha_s$	$H \to b\bar{b}$		$\sim 0.2\%$	0	1.4%	0.4%
R_{b} [10 ⁻⁵]	6	< 1	$\delta \alpha_s$	$H \to c \bar c$		$\sim 0.2\%$	0	4.0%	0.4%
$B_{a}[10-3]$	1	13	δα.	$H \to gg$		$\sim 3\%$		< 0.2%	3.7%
	T	1.5	$-\alpha_s$						

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

State-of-the-art for the strong coupling $\alpha_s(m_z)$

 PDG approach: set selection criteria (NNLO QCD, published result, standard theory uncertainty) and treat all measurements democratically with unweighted pre-averages

 \rightarrow Test of QCD, unbiased result, but total uncertainty affected by unresolved tensions

 Critical view: select a smaller set of *clean* α_s(m_z) measurements to achieve better precision:

[...] one should select few theoretically simplest processes for measuring α s and consider all other ways as tests of the theory (G. Altarelli)

Desirable features of a clean $\alpha_s(m_z)$ measurement

- Large observable's sensitivity to α_{s} as compared to the experimental precision
- High (perturbative) accuracy of the perturbative prediction
- Small size of non-perturbative effects
- The scale at which the measurement is performed

Prospects for $\alpha_s(m_z)$ at 0.1% from Z p_T

Experimental wishlist

- LHC measurement of Z p_T are significantly more precise than Tevatron, likely to reach a few 10⁻⁴ experimental uncertainty on α_s(m_z) with Run 2 and Run 3 data samples
- The main experimental limitation will be the lepton momentum/energy scale, currently known at ~ 10^{-3} . Improving to 10^{-4} will help to reach high precision on $\alpha_s(m_z)$

 Precise measurements of DY p_T at low and intermediate mass will help reducing the non perturbative uncertainties

Theory wishlist

- N4LL ingredients (5-loop cusp, 4-loop RAD)
- N4LL' ingredients (N3LO PDFs, N4LO TMD, 4-loop quark form factor,...)
- Improved heavy-flavour treatment (massive corrections, VFN)
- Joint qt/small-x resummation
- QED/QCD qt-resummation
- First-principle understanding of non-perturbative corrections

Prospects to reach subpercent precision in the next 10 years mostly rely on theory developments

QED ISR correction

- QED ISR estimated with Pythia 8, and applied as a multiplicative correction
- Correction to the Z-boson p_T at the level of 1%
- Effect on $\alpha_s(m_z)$: $\Delta \alpha_s = -0.0004$
- Comparable to corrections obtained with QED qt-resummation

• Alternative fits with blim = 2 and with the minimal prescription: $\delta\alpha_s = +0.0006 - 0.0004$ $\delta g = +0.21 - 0.13$

Measure $\alpha_s(m_z)$ from semi-inclusive DY

Desirable features for a measurement of $\alpha_s(m_z)$ [PDG]

- Large observable's sensitivity to $\alpha_s(m_z)$ compared to the experimental precision
- High accuracy of the theory prediction
- Small size of non-perturbative QCD effects
- Measuring $\Lambda_{\overline{MS}}$ from semi-inclusive (radiation inhibited) DY cross sections was first proposed in Nucl. Phys. B 349 (1991) 635-654 (Catani, Marchesini, Webber), in the context of Monte Carlo parton showers
- Here we consider as semi-inclusive observable the Z $p_{_{\rm T}}$ distribution in the Sudakov region

- Inclusive observables benefit from higher theory accuracy and smaller non-pQCD effects, but usually smaller experimental sensitivity to $\alpha_s(m_z)$
- Exclusive observables have higher experimental sensitivity, but generally larger theory uncertainties
- Semi-inclusive observables may take benefits from both categories