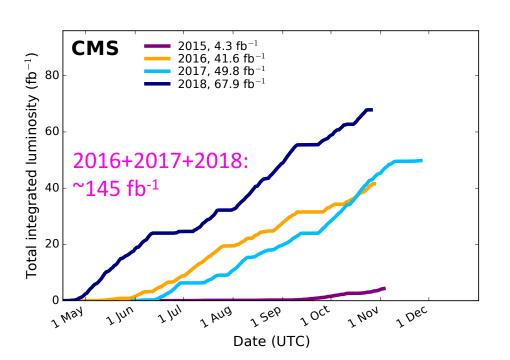
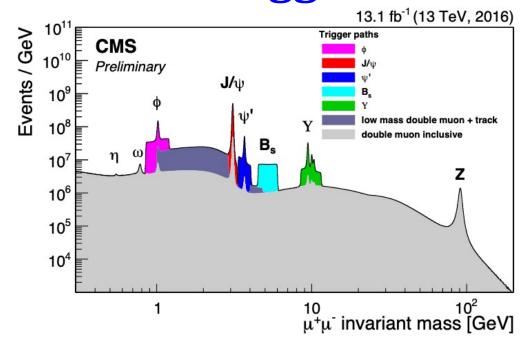
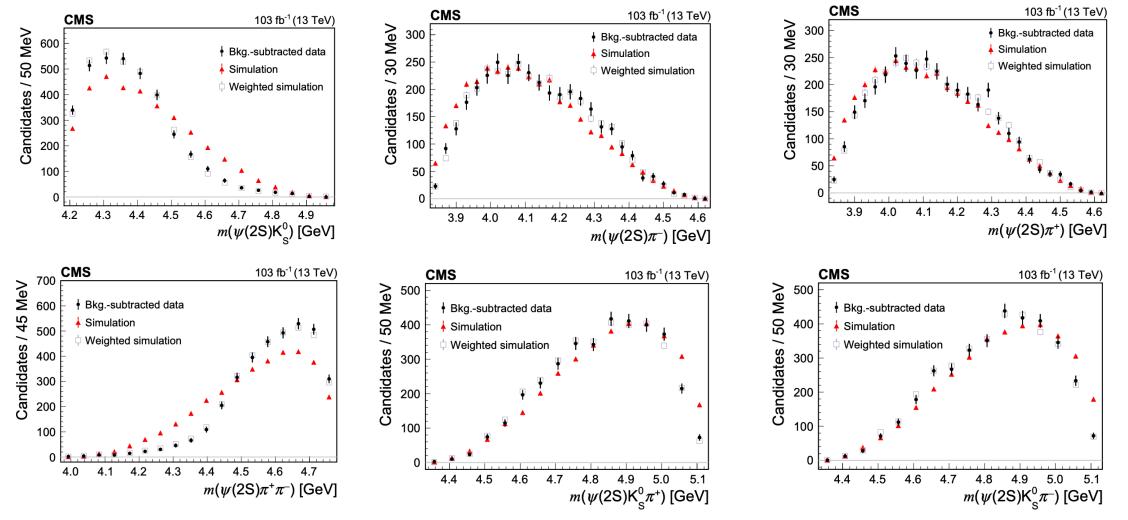

Recent CMS results on exotic resonances

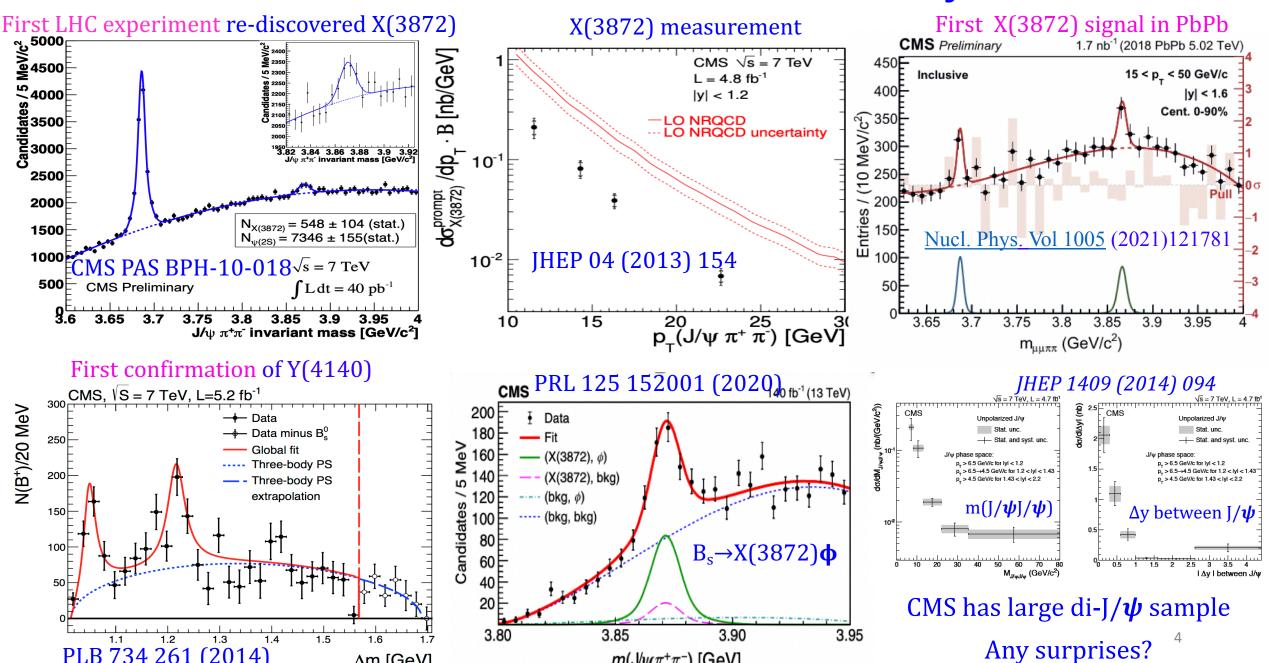

Kai Yi


(Nanjing Normal University & Tsinghua University)
for the CMS Collaboration

^{η coverage (track & muon):} [-2.5,2.5] The CMS detector & trigger



Excellent detectors for (exotic) quarkonium:


- Muon system
 - High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.
 - μ p_T, $(\mu\mu)$ p_T, $(\mu\mu)$ mass, $(\mu\mu)$ vertex, and additional μ

Recent CMS contributions to heavy exotic states --Search for exotics through $B^0 \rightarrow \psi(2S) K_s \pi^+ \pi^-$ decays

$$\mathcal{B}(B^0 \to \psi(2S) K_S^0 \pi^+ \pi^-) = (13.9 \pm 0.4 \, (\text{stat}) \pm 0.9 \, (\text{syst}) \pm 1.2 \, (\mathcal{B})) \times 10^{-5}$$
 First observation

Other selected CMS contributions to heavy exotic states

 $m(J/\psi\pi^+\pi^-)$ [GeV]

PLB 734 261 (2014)

∆m [GeV]

New Domain of Exotics: All-Heavy Tetra-quarks

- First mention of 4c states at 6.2 GeV (1975): Prog. of Theo. Phys. Vol. 54, No. 2 (Just one year after the discovery of J/ψ)
- First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317

$\frac{L}{L}$	<i>S</i>	JPC	Mass (GeV) 6.55		(0	$(cc)_{\underline{6}} - \overline{(cc)}$	`) ₆ *
1	1 2	0 ⁻⁺ , 1 ⁻⁺ , 2 ⁻⁺ 1 , 2 , 3		L	S	J ^{PC}	Mass (GeV)
2	0 1 2	2 ⁺⁺ 1 ⁺⁻ , 2 ⁺⁻ , 3 ⁺⁻ 0 ⁺⁺ , 1 ⁺⁺ , 2 ⁺⁺ , 3 ⁺⁺ , 4 ⁺⁺	$\longleftarrow (cc)_{\underline{3}} * -$	$\overline{(cc)}_{\underline{3}}$ $\frac{1}{1}$	0	1	6.82 7.15
3	0 1 2	3 2 ⁻⁺ , 3 ⁻⁺ , 4 ⁻⁺ 1 , 2 , 3 , 4 , 5	6.98	3	0	3	7.13

- Many recent theoretical studies on $(c\overline{c}c\overline{c})$, $(b\overline{b}b\overline{b})$, $(b\overline{b}c\overline{c})$:
 - controversial on existence of bound states below $\eta_b \eta_b$ threshold;
 - consistent on existence of resonant states above $\eta_b \eta_b$ threshold.

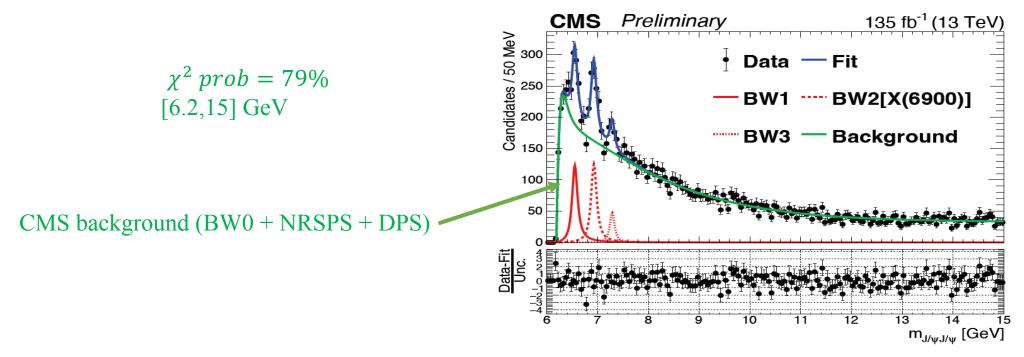
$J/\psi J/\psi$ --Data samples & Event selections

- 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- Trigger: 3μ with a J/ ψ mass window, μ p_T from J/ ψ >3.5 GeV for 2017&2018 data
- Blinded signal region: [6.2,7.8] GeV
 based on preliminary investigation on data collected in 2011-2012
- Main selections:
 - Fire corresponding trigger in each year
 - $p_T(\mu) > = 2.0 \text{ GeV}$; $|\eta(\mu)| < = 2.4$; $p_T(\mu) (J/\psi) > = 3.5 \text{ GeV} (2017\&2018)$; soft muon ID (very loose)
 - $p_T(\mu^+\mu^-) >= 3.5 \text{ GeV}$; $m(\mu^+\mu^-)$ in [2.95,3.25] GeV; then constrain $m(\mu^+\mu^-)$ to J/ψ mass
 - 4*μ* vertex probability >0.005
 - Multiple candidates treatment:
 - Select best combination of same 4μ (~0.2%) with

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$$

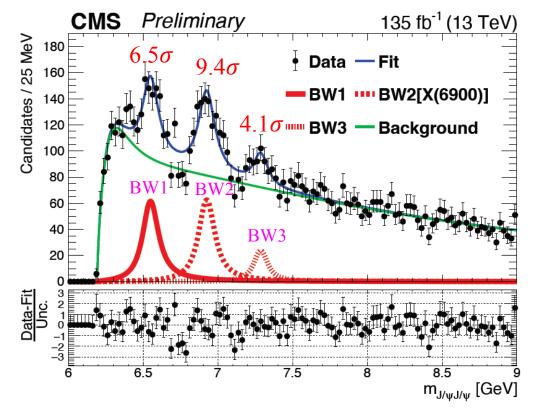
- Keep all candidates arising from $>=4\mu$ (\sim 0.2%)
- Signal and background samples produced by Pythia8, JHUGen, HELAC-Onia...

Steps to identify structures in $J/\psi J/\psi$ mass spectrum


- Null-hypothesis (initial baseline model): NRSPS+NRDPS
- Add potential structures to baseline model
 - Add most prominent structure to baseline model
 - Calculate its local significance
 - Keep in baseline only if $> 3\sigma$ significance
 - Repeat until no more $> 3\sigma$ structures

NRSPS—Non-Resonant Single Parton Scattering
NRDPS—Non-Resonant Double Parton Scattering
Local significance: standard likelihood ratio method

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}$$
, where $\Gamma(m) = \Gamma_0 \frac{qm_0}{q_0m}$,


Relativistic S-wave Breit-Wigner (BW) for each structure convolved with resolution function

CMS background (BW0 + NRSPS + DPS)

- Most significant structure in first step is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - Inadequacy of our NRSPS model at threshold though one floating parameter?
 - BW0 parameters very sensitive to other model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- NRSPS+NRDPS+BW0 as our background

Final CMS model: 3 BWs + Background (null)

Statistical significance based on:

2 In(L₀/L_{max})

	BW1 (MeV)	BW2 (MeV)	BW3 (MeV)
m	6552 ± 10	6927± 9	7287± 19
Γ	124± 29	122± 22	95± 46
N	474± 113	492± 75	156± 56

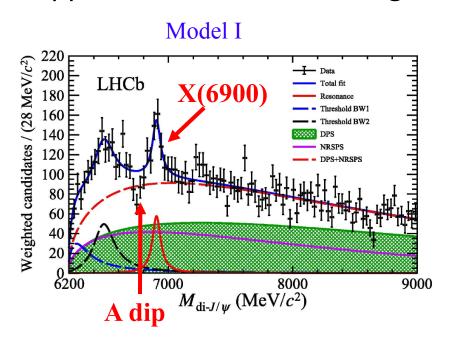
 χ^2 Prob. = 1% [6.2,7.8] GeV

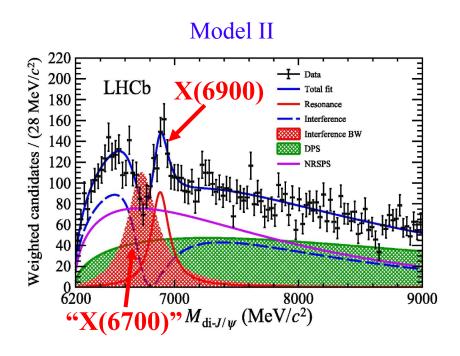
- BW2[X(6900)] (>9.4 σ) confirmation
- Observation of BW1 ($>5.7\sigma$)
- Evidence for BW3 (>4.1 σ)

Statistical significance only

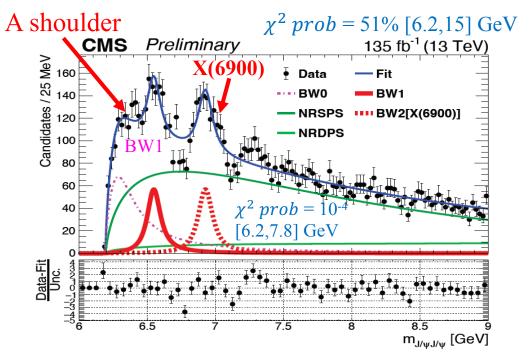
Summary of systematic uncertainties and CMS result

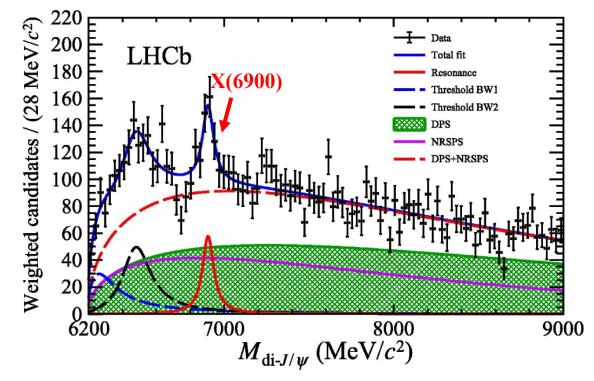
		1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Table 2: Systematic uncertainties	s on masses an	id widths in MeV
rable 2. Systematic differ tallities	off filaboco an	ia wiatib, iii ivic v

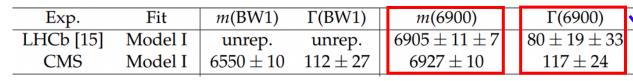

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	/1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
feeddown shape	11)1	1	25	8	6
momentum scaling	\\1	3	4	-	-	-
resolution	< 1	< 1	< 1	< 1	< 1	1
efficiency	< 1	< 1	< 1	1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
total	12	5	5	34	19	20


- Investigated effects of systematics on local significance by a profiling procedure
 a discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5σ to >5.7σ
 - No relative significance changes for BW2 and BW3

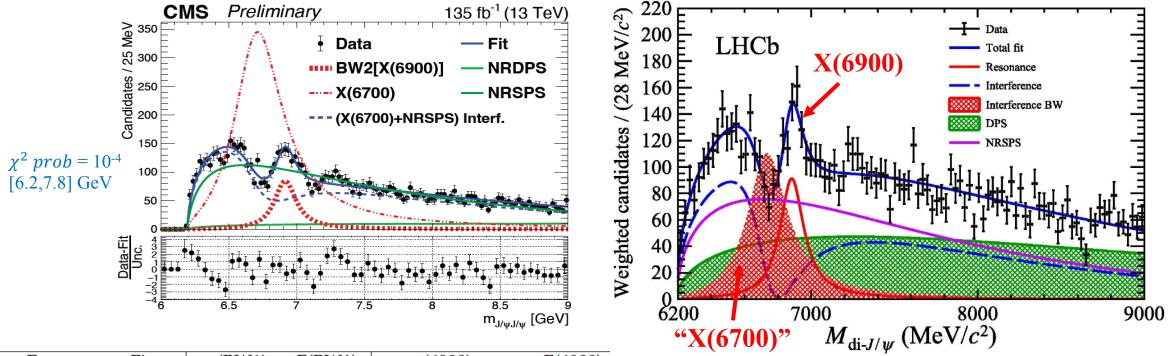
M[BW1] = 6552 ± 10 ± 12 MeV	$\Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV}$	>5.7 σ		X(6900) [LHCb] (somewhat different fit model)
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 σ	consistent	Γ M[BW2]=6905±11±7 MeV Γ [BW2] =80±19±33 MeV
$M[BW3] = 7287 \pm 19 \pm 5 MeV$	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 σ		


X(6900) reported by LHCb


- In 2020, LHCb reported X(6900) state in J/ψJ/ψ final state, <u>Sci.Bull.65 (2020) 23</u>
- Tried two different models
 - Model I: background+2 auxiliary BWs+ $X(6900) \rightarrow$ poor description of 'dip' around 6.7 GeV
 - Model II: a "virtual" X(6700) to interfere with NRSPS background to account for dip
- LHCb agnostic on which one is to be preferred
- What happens if fit CMS data using LHCb models?



Fit with LHCb model I--background+2 auxiliary BWs+ X(6900)



X(6900) parameters are in good agreement with LHCb LHCb did not give parameters for another 2 BWs

- CMS Data shows a shoulder before BW1
- CMS shoulder helps make BW1 distinct
- Does not describe well dips

- CMS vs LHCb comparisons:
 - $135/9 \approx 15X$ (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance due to pseudo-rapidity range)
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events

Fit with LHCb model II—DPS+X(6900)+"X(6700)" interferes with NRSPS

Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	m(6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905 \pm 11 \pm 7$	$80 \pm 19 \pm 33$
CMS	Model I	6550 ± 10			000000000000000000000000000000000000
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886 \pm 11 \pm 11$	$168 \pm 33 \pm 69$
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40

All CMS fits presented are not very good:

...other interference scenarios are under study in CMS

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for BW1
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7200) region

Summary

CMS found 3 significant structures using 135 fb⁻¹ 13 TeV data

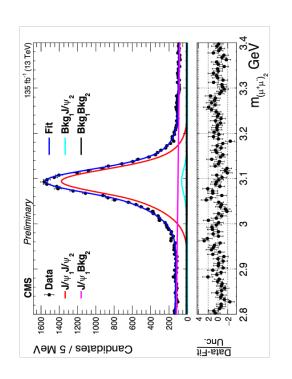
$M[BW1] = 6552 \pm 10 \pm 12 MeV$	$\Gamma[BW1] = 124 \pm 29 \pm 34 \text{ MeV}$	>5.7 σ
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 σ
$M[BW3] = 7287 \pm 19 \pm 5 MeV$	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 σ

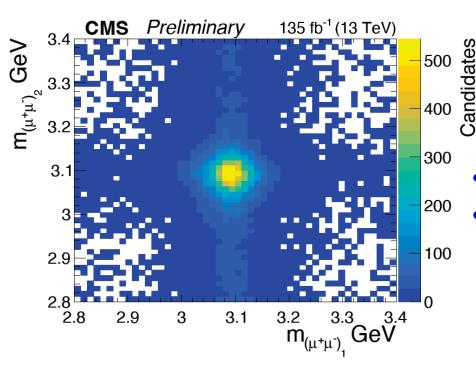
- BW2 consistent with X(6900) reported by LHCb
- CMS found two new structures, provisionally named as X(6600), X(7200)
- A family of structures which are candidates for all-charm tetra-quarks!
- Dips in the data show possible interference effects --- Under study
- More data/knowledge needed to understand nature of near threshold region
- All-heavy quark exotic structures offer system easier to understand
- A new window to understand strong interaction

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html

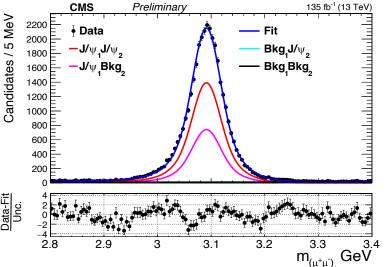
Backup

Significances including systematics

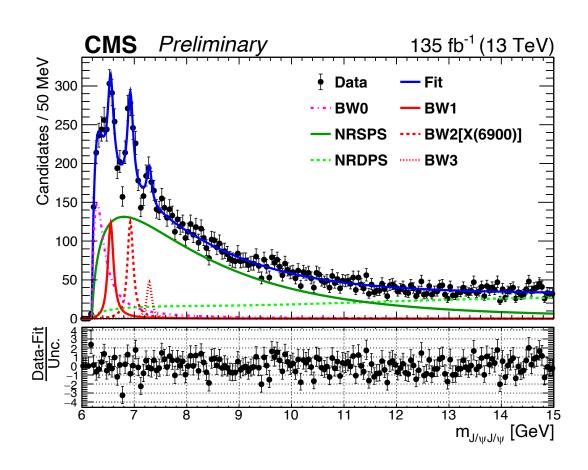

- To include systematics, alternative resonance/background shapes applied in the fit:
- Calculate signal- and null-hypothesis NLL_{syst} including systematic using:


$$NLL_{syst-sig} = Min\{NLL_{nom-sig}, NLL_{alt-i-sig} + 0.5 + 0.5 \cdot \Delta dof\}$$

- $NLL_{nom-sig}$ means the NLL of nominal 'signal hypothesis' fit.
- $NLL_{alt-i-sig}$ means the NLL of i-th alternative fit of 'signal hypothesis'
- Δdof means the additional free parameters comparing to the nominal 'signal hypothesis' fit.
- $NLL_{syst-null} = Min\{NLL_{nom-null}, NLL_{alt-j-null} + 0.5 + 0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from $NLL_{syst-null} NLL_{syst-sig}$


	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

J/ψ signal




- Remove by J/ψ mass related cuts
- Clean J/ψ signal as seen

- ~15000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ <15 GeV)
- ~9000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ <9 GeV)

Final CMS model: 3 BWs + Backgrounds+ BW0

