Quarks and gluons in the Lund plane

<u>Adam Takacs</u>^{*} University of Bergen (Norway) Frederic Dreyer University of Oxford (UK) Gregory Soyez IPhT, CNRS, CEA Saclay (France)

Based on <u>arXiv:2112.09140</u>

Classifying q/g jets

• $\underline{q/g \text{ tagging}}$: QCD bkg of jet studies, jet quenching, etc.

- Discriminators up to now:
 - 1. Jet substructure: angularity, E-E-correlation, jet charge, Lund plane
 - 2. Neural networks (NN): CNN, RNN, energy-flow, GNN

Classifying q/g jets

• $\underline{q/g}$ tagging: QCD bkg of jet studies, jet quenching, etc.

- Discriminators up to now:
 - 1. Jet substructure: angularity, E-E-correlation, jet charge, Lund plane
 - 2. Neural networks (NN): CNN, RNN, energy-flow, GNN

- 1. Find a jet
- 2. Recluster with C/A:

 $\mathcal{T}_{j} = \{\Delta_{j}, z_{j}, \psi_{j}, \dots\}$ $\mathcal{L}_{prim}(j) = \left[\mathcal{T}_{1}, \mathcal{T}_{2}, \dots, \mathcal{T}_{j}\right]$

Exclusive probability

 $p_{f_{in}}(\mathcal{L}_{tree})$

Declustering history = graph

Graph neural network (LundNet) Train on generated and labeled events [F.Dreyer,H.Qu, 2012.08526]

Likelihood ratio:

 $\mathbb{L}_{tree} = \frac{p_q(\mathcal{L}_{tree})}{n_s(\mathcal{L}_{tree})}$

ideal discriminant at NLL!

- 1. Find a jet
- 2. Recluster with C/A:

 $\mathcal{T}_{j} = \{\Delta_{j}, z_{j}, \psi_{j}, \dots\}$ $\mathcal{L}_{tree}(j) = \left[\mathcal{T}_{j}, \mathcal{L}_{j,hard}, \mathcal{L}_{j,soft}\right]$

Exclusive probability

 $p_{f_{in}}(\mathcal{L}_{tree})$

Declustering history = graph

Graph neural network (LundNet) Train on generated and labeled events [F.Dreyer,H.Qu, 2012.08526]

Likelihood ratio:

 $\mathbb{L}_{tree} = \frac{p_q(\mathcal{L}_{tree})}{n_s(\mathcal{L}_{tree})}$

ideal discriminant at NLL!

- 1. Find a jet
- 2. Recluster with C/A:

 $\mathcal{T}_{j} = \{\Delta_{j}, z_{j}, \psi_{j}, \dots\}$ $\mathcal{L}_{tree}(j) = \left[\mathcal{T}_{j}, \mathcal{L}_{j,hard}, \mathcal{L}_{j,soft}\right]$

Exclusive probability

 $p_{f_{in}}(\mathcal{L}_{tree})$

Declustering history = graph

Graph neural network (LundNet) Train on generated and labeled events [F.Dreyer,H.Qu, 2012.08526]

Likelihood ratio:

$$\mathbb{L}_{tree} = \frac{p_q(\mathcal{L}_{tree})}{p_g(\mathcal{L}_{tree})}$$

ideal discriminant at NLL!

- 1. Find a jet
- 2. Recluster with C/A:

 $\mathcal{T}_{j} = \{\Delta_{j}, z_{j}, \psi_{j}, \dots\}$ $\mathcal{L}_{tree}(j) = \left[\mathcal{T}_{j}, \mathcal{L}_{j,hard}, \mathcal{L}_{j,soft}\right]$

Exclusive probability

 $p_{f_{in}}(\mathcal{L}_{tree})$

Graph neural network (LundNet) Train on generated and labeled events [F.Dreyer,H.Qu, 2012.08526]

Likelihood ratio:

 $\mathbb{L}_{tree} = \frac{p_q(\mathcal{L}_{tree})}{n_s(\mathcal{L}_{tree})}$

ideal discriminant at NLL!

fin

Equivalence of NN and NLL 1.

Performance:

- primary < tree
- analytic = NN

Equivalence of NN and NLL 1.

Performance:

- primary < tree
- analytic = NN

Performance test

Performance:

- primary < tree
- analytic << NN

Where is the improvement from?

Performance test

ROC curve:

<u>Performance</u>:

- primary < tree
- analytic << NN

Where is the improvement from?

Equivalence of ML and NLL 2.

NLL accuracy test: [PanScales 2002.11114]

$$\alpha_{s}(p_{T}R) \to 0$$

$$\log \frac{p_{T}R}{k_{t,cut}} \to \infty$$

$$\alpha_{s}(p_{T}R) \log \frac{p_{T}R}{k_{t,cut}} = const$$

- in the NLL limit NN \rightarrow analytic
- the NN gains from
 - 1. subleading terms
 - 2. non-perturbative physics
 - 3. etc.

Equivalence of ML and NLL 2.

NLL accuracy test: [PanScales 2002.11114]

$$\alpha_{s}(p_{T}R) \to 0$$

$$\log \frac{p_{T}R}{k_{t,cut}} \to \infty$$

$$\alpha_{s}(p_{T}R) \log \frac{p_{T}R}{k_{t,cut}} = const$$

- in the NLL limit NN \rightarrow analytic
- the NN gains from
 - 1. subleading terms
 - 2. non-perturbative physics
 - 3. etc.

- q/g jet likelihood is calculated at NLL accuracy.
- NN is constructed to do the same (state-of-the-art tagger).
- NN = analytics in the NLL limit!
- Performance: NN > analytic
 Resilience: NN < analytic

subleading terms, NP effects

Thank you for your attention!

Backup: Test of resilience

Studies:

- sensitivity to the hard process (dijet vs. Z+jet)
- sensitivity to non-perturbative effects (MPI, hadronization)
- sensitivity to the MC (Pythia8 vs. Herwig7)

primary ~ tree NN < analytic

ICHEP 2022 Bologna