

ATLAS results on exotic hadronic resonances

Evelina Bouhova-Thacker (Lancaster University) On behalf of the ATLAS Collaboration

ICHEP 2022, Bologna, Italy, July 6 – 13 2022

Introduction

Exotic hadrons composed of four $(qq\bar{q}\bar{q}\bar{q})$ or five quarks $(qqq\bar{q}\bar{q}\bar{q})$ predicted by theory They provide an unique environment to study the strong interaction and confinement A series of states consistent with containing four quarks have been discovered The existence of pentaquark states and their interpretation is not well established so far

In this talk:

Study of J/ψ p resonances in the $\Lambda_b^0 \to J/\psi$ pK⁻ decays in p p collisions at \sqrt{s} = 7 and 8 TeV with the ATLAS detector

ATLAS-CONF-2019-048

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector

 ATLAS-CONF-2022-040
 NEW

 ATLAS-CONF-2022-040
 NEW

Pentaquarks in the J/ψ pK **state**

In 2015 LHCb reported the observation of J/ψ p resonant structures in $\Lambda_b^0 \to J/\psi$ pK⁻ decays

interpreted as $c\bar{c}uud$ pentaquark states Phys. Rev. Lett. 115, 072001

 $P_c(4380)^+$ M = 4380 ± 8 ± 29 MeV, width = 205 ± 18 ± 86 MeV, $J^P = 3/2^-$

 $P_c(4450)^+$ M = 4449.8 ± 1.7 ± 2.5 MeV, width = 39 ± 5 ± 19 MeV, $J^P = 5/2^+$

Later seen in $\Lambda_b^0 \to J/\psi \ \mathrm{p}\pi^-$ Phys. Rev. Lett. 117, 082003

Not observed by GlueX in $\gamma p \rightarrow J/\psi p$ Phys. Rev. Lett. 123, 072001 (small BR) Seen by D0 Collaboration (3σ): arXiv:1910.11767

In 2019 LHCb resolved the $P_c(4450)^+$ peak into 2 states

 $P_c(4440)^+$ and $P_c(4457)^+$ 5.4 σ

and reported an additional narrow state $\ P_c(4312)^+ \ 7.3\sigma$

State	M [MeV]	Γ [MeV]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$

narrow states below $\Sigma_c \bar{D}^{(*)}$ thresholds alternative explanations not ruled out

Study of J/ψ p resonances in the $\Lambda_b^0 \to J/\psi$ pK⁻decays in p p collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS detector Using $\mathcal{L} = 4.9 \text{ fb}^{-1}$ of 7 TeV (2011) and $\mathcal{L} = 20.6 \text{ fb}^{-1}$ of 8 TeV (2012) ATLAS Run-1 data No particle identification (for hadrons): $\Lambda_b^0 \to J/\psi \ pK^-$ decays (+ charge conjugate) reconstructed together with $B^0 \to J/\psi \ K^+\pi^-$, $B^0 \to J/\psi \ \pi^+\pi^-$, $B_s^0 \to J/\psi \ K^+K^-$ and $B_s^0 \to J/\psi \ \pi^+\pi^-$ decays

Signal and background processes generated with Pythia 8.1 ("phase space" model)

 $\Lambda_b^0 \to J/\psi \ pK^-$: contributions from light Λ^* states are considered $B^0 \to J/\psi \ K^+\pi^-$: contributions from light K^* states are included, potential contribution from $B^0 \to Z_c(4200)^- \ K^+ \to J/\psi \ \pi^- K^+$ (considered as systematic effect)

Other exotic (Z_c) contributions not included

 $M(K\pi) > 1.55 \text{ GeV}$ applied to both hypotheses combinations, leading to M(pK) > 2.0 GeV $B_s^0 \rightarrow J/\psi K^+ K^-$: contributions from ϕ and f_2 states are included $B^0 \rightarrow J/\psi \pi^+ \pi^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$: intermediate and non-resonant phase space decays considered

Study of J/ψ p resonances in the $\Lambda_b^0 \to J/\psi$ pK⁻decays in p p collisions at $\sqrt{s} =$ 7 and 8 TeV with the ATLAS detector

Signal and control regions and Fit Procedure

Fits performed after subtracting same-sign background contribution (both hadron tracks with same charge) Multi-dimensional (different hadron mass assignments) binned maximum likelihood fits

$$\begin{split} \Lambda_b \mbox{ signal region (SR):} & 5.59 \mbox{ GeV} < m(J/\psi, h_1 = p, h_2 = K) < 5.65 \mbox{ GeV} \\ B^0 \mbox{ control region (CR):} & 5.25 \mbox{ GeV} < m(J/\psi, h_1 = K, h_2 = \pi) < 5.31 \mbox{ GeV} \\ B^0_s \mbox{ control region:} & 5.337 \mbox{ GeV} < m(J/\psi, h_1 = K, h_2 = K) < 5.397 \mbox{ GeV} \\ \mbox{ Background shape CR:} & 5.35 \mbox{ GeV} < m(J/\psi, h_1 = p, h_2 = K) < 5.45 \mbox{ GeV} \\ \end{split}$$

Iterative fit procedure with 4 steps at each iteration:

Step 1: fit to $m(J/\psi hh)$, $m(J/\psi h)$, m(hh) to obtain parameters of B^0 and B_s^0 backgrounds Step 2: fit to $m(J/\psi h)$, m(hh) to retrieve total number of Λ_b decays, number of combined B^0 and B_s^0 decays and combinatorial background parameters Step 3: fit $m(J/\psi, h_1 = p, h_2 = K)$ in SR to obtain the decay constants of the Λ_b decays Step 4: fit $m(J/\psi, h_1 = p)$ in SR to obtain pentaquark masses, widths, amplitudes and the relative phase between the pentaquark amplitudes $\Delta\phi$

Study of J/ψ p resonances in the $\Lambda_b^0 \to J/\psi$ pK⁻decays in p p collisions at \sqrt{s} = 7 and 8 TeV with the ATLAS detector

Results

$$\begin{split} & \mathsf{Yields:} \\ N(\Lambda_b^0 \to J/\psi \ pK^-) \approx 2270 \pm 300 \\ N(B^0 \to J/\psi \ K^+\pi^-) \approx 10770 \\ N(B_s^0 \to J/\psi \ K^+K^-) \approx 2290 \\ N(B^0 \to J/\psi \ \pi^+\pi^-) \approx 1070 \\ N(B_s^0 \to J/\psi \ \pi^+\pi^-) \approx 1390 \end{split}$$

In SR:

 $N(\Lambda_b^0 \to J/\psi \ pK^-) \approx 1010 \pm 140$ (correct mass assignment) $N(\Lambda_b^0 \to J/\psi \ pK^-) \approx 160 \pm 20$ (swapped mass assignment)

Fit without pentaquarks

Best result obtained using the extended $\Lambda_b^0 \rightarrow J/\psi \Lambda^{*0}$ decay model (no exotic states): (clear region, corresponding to open green histogram)

two lowest orbital momenta between the decay products of $\Lambda^*(1800)$, $\Lambda^*(1810)$ and $\Lambda^*(1890)$ and one lowest orbital momentum between the decay products of $\Lambda^*(2100)$ and $\Lambda^*(2110)$

$$\chi^2 / N_{dof} = 42.0/23$$

(p-value = 9.1×10^{-3})

Study of $J/\psi p$ resonances in the $\Lambda_b^0 \to J/\psi p K^-$ decays in p p collisions at $\sqrt{s} =$ 7 and 8 TeV with the ATLAS detector

Results with pentaquarks

Fit with two pentaquarks, $J^P(3/2^-, 5/2^+)$

Paramet	ter	Value	LHCb value [5]
o interference $\ N(P_{c1}$) 400_	$^{130}_{140}(\text{stat})^{+110}_{-100}(\text{syst})$	_
o interference $\ N(P_{c2}$) 150_	$^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	_
$N(P_{c1} +$	P_{c2}) 5402	$^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	-
$\Delta \phi$	$2.8^{+1.0}_{-1.6}$	$_{6}^{0}(\text{stat})_{-0.1}^{+0.2}(\text{syst}) \text{ rad}$	_
$m(P_{c1}$) 4282^{+33}_{-26}	$_{6}^{3}(\text{stat})_{-7}^{+28}(\text{syst})$ MeV	$4380\pm8\pm29~{\rm MeV}$
$\Gamma(P_{c1})$) 140^{+77}_{-50}	$\int_{0}^{1} (\text{stat})^{+41}_{-33} (\text{syst}) \text{ MeV}$	$205\pm18\pm86~{\rm MeV}$
$m(P_{c2}$) 4449^{+20}_{-29}	$(\text{stat})^{+18}_{-10}$ (syst) MeV	$4449.8 \pm 1.7 \pm 2.5$ MeV
$\Gamma(P_{c2})$) 51^{+59}_{-48}	$P_{8}(\text{stat})^{+14}_{-46}$ (syst) MeV	$39 \pm 5 \pm 19$ MeV

Good agreement with LHCb (slight tension in P_{c1})

Fit with four pentaquarks (fixed to LHCb values)

Two pentaquarks: $\chi^2/N_{dof} = 37.1/39$ p-value = 55.7%

(fixed to LHCb values: p-value = 24.5%)

Four pentaquarks: $\chi^2/N_{dof} = 37.1/42$ p-value = 68.6%

Better fit achieved if pentaquark states are included, but non-pentaquark model still permitted

Tetraquarks in the four-muon final state

arXiv:2006.16957

Evidence for a narrow resonance at 6.9 GeV in the di- $J/\psi \rightarrow 4\mu$ mass spectrum in LHCb data

Can be interpreted as a tetra-quark with four charm quarks $T_{cc\bar{c}\bar{c}}$

The enhancement seen near the di- J/ψ mass threshold could be due to a mixture of multiple four-charm quark states or have contributions from feed-down decays of four-charm states through heavier quarkonia or could be the result of re-scattering of charmonium final states

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector NEW

Using $\mathcal{L} = 139 \text{ fb}^{-1}$ of 13 TeV of ATLAS Run-2 data collected in 2015 to 2018 Search in the 4μ final state through the di- J/ψ and $J/\psi + \psi(2S)$ channels

 ${\rm di}{\rm -}\psi(2{\rm S}) \rightarrow 4\mu$ statistically not accessible with Run-2 data

Signal simulated with JHU: TQ mass = 6.9 GeV, width = 0.1 GeV, spin = 0

Background processes (simulated with Pythia8):

prompt di- J/ψ : Single Parton Scattering (SPS) and Double Parton Scattering (DPS) non prompt di- J/ψ : $b\bar{b} \rightarrow J/\psi J/\psi$

"Others" background: single (prompt or non prompt) charmonium plus fake muons, non-peaking background containing no real charmonium candidates

(CRs defined in sidebands and by requiring one charmonium containing a non muon track)

Event selection and signal and control regions:

	Signal region	SPS/DPS control region	non-prompt region				
	Di-muon or tri-muon triggers,						
	Opposite charged muons from the same J/ψ or $\psi(2S)$ vertex,						
Loose muon ID, $p_T^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons							
	$m_{J/\psi} \in \{2.94$	$\{3.25\}$ GeV, or $m_{\psi(2S)} \in \{3.56, 3.80\}$ G	ieV,				
Loose vertex cuts $\chi^2_{4\mu}/N < 40$ and $\chi^2_{di-\mu}/N < 100$,							
N = 5 Vertex $\chi^2_{4\mu}/N < 3$,							
r.t primary v	vertex closest in z $L_{xy}^{4\mu} < 0.2 \text{ mm}$	m, $ L_{xy}^{di-\mu} < 0.3$ mm,	Vertex $\chi^2_{4\mu}/N > 6$,				
	$m_{4\mu} < 7.5$ GeV,	7.5 GeV < $m_{4\mu}$ < 12.0 GeV (SPS)	$ L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm}$				

SPS mass shape validated using $\Delta R \geq 0.25~{ m CR}$

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector

Fit Models

Unbinned maximum likelihood fits on the four-muon mass spectra < 11 GeV, no ΔR cut fit signal region $\Delta R < 0.25$, fit control region $\Delta R \ge 0.25$, with transfer factors for background yields from MC or data driven methods

The signal probability density function (PDF) consists of several interfering S-wave Breit-Wigner resonances, convoluted with a mass resolution function $R(\alpha)$

$$f_s(x) = \left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + im_i \Gamma_i} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2} \otimes R(\alpha)} \frac{z_i}{z_1} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2} \otimes R(\alpha)} = \frac{1}{z_1} \frac$$

 z_i : complex numbers representing the amplitudes z_1 fixed to unity with zero phase

no interference with NRSPS (LHCb model)

di- J/ψ channel:

models with different numbers of resonances (2 or 3) are compared in terms of χ^2 or toy MC distributions

 $J/\psi + \psi(2S)$ channel:

Model A: same resonances as in di- J/ψ , plus a 4th standalone resonance

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + im_i \Gamma_i} \right|^2 + \left| \frac{z_3}{x^2 - m_3^2 + im_3 \Gamma_3} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\alpha)$$

Model B: a single resonance

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector

Results in di- J/ψ channel

 4μ mass distribution from data and background predictions before fit

Events / 0.10 Ge

Data/Pred.

6.9 GeV resonance confirmed, best fit with 3 interfering resonances, other explanations possible

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector

Evidence for an enhancement at 6.9 GeV and a resonance at 7.2 GeV, other explanations possible

Conclusions

Analysis of ATLAS of 7 and 8 TeV data containing $\Lambda_b^0 \to J/\psi \, pK^-$ decays with large $m(pK^-)$:

shows evidence for the existence of pentaquark states, consistent with the LHCb results data does not allow independent measurements of pentaquark parameters model without pentaquark states not excluded

Di-charmonium resonance search in the four-muon final state with ATLAS 13 TeV data:

significant excess observed in the di- J/ψ channel

a broad structure at lower mass and a resonance around 6.9 GeV

consistent with LHCb results

best description given by a 3-resonance model with interference

other interpretations not ruled out

(multiple peaks without interference, reflections, threshold enhancement) excess observed in the $J/\psi + \psi(2S)$ channel at 6.9 and 7.2 GeV more data needed to characterise the excesses in both channels

Backup slides

The ATLAS Detector

 e/γ trigger, identification and measurement **Resolution:** $\sigma/E \sim 10\%/\sqrt{E}$

pT resolution: $\sigma/p_T \sim 3.8 \times 10^{-4} \ p_T (GeV) \oplus 0.015$ $|\eta| < 2.5, \ B = 2T$ Trigger and measurement of jets and MET Resolution:

 $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$

Study of J/ψ p resonances in the $\Lambda_b^0 \to J/\psi$ pK⁻decays in p p collisions at \sqrt{s} = 7 and 8 TeV with the ATLAS detector

Event selection

 J/ψ selection: $p_T(\mu^{\pm}) > 4 \text{ GeV} |\eta(\mu^{\pm})| < 2.3 \quad 2807 < m_{\mu^{\pm}\mu^{-}} < 3387 \text{ MeV}$ B-hadron $(H_b = \Lambda_b, B^0 \text{ or } B_s)$ selection: $\chi^2(H_b)/N_{dof} < 2, \ N_{dof} = 8$ fit with a J/ψ mass constraint $L_{xy}(H_b) < 0.7 \, {\rm mm}$ w.r.t primary vertex closest in 3D $p_T(p) > 2.5 \text{ GeV}, \ p_T(K) > 1.8 \text{ GeV}, \ p_T(H_b) / \Sigma p_T(\text{track})$ $\cos heta_{P_c} < 0.5 \ \ heta_{P_c}$: angle between J/ψ momentum in the P_c rest frame and P_c momentum in the Λ_b rest frame $\cos \theta_{\Lambda_b} < 0.8 \ \ heta_{\Lambda_b}$: angle between P_c momentum and Λ_b momentum in the laboratory frame $|\cos \theta_{\Lambda^*}| < 0.85 \ \theta_{\Lambda^*}$: angle between kaon momentum in the $\Lambda^* \to pK$ rest frame and Λ^* momentum in the Λ_b rest frame $p_T(H_b) > 12 \text{ GeV}, |\eta(H_b)| < 2.1$

Selected events dominated by combinatorial background and B-hadron decays to J/ψ and light neutral mesons $M(K\pi) > 1.55$ GeV applied to both hypotheses combinations, leading to M(pK) > 2.0 GeV.

Study of $J/\psi p$ resonances in the $\Lambda_b^0 \to J/\psi p K^-$ decays in p p collisions at $\sqrt{s} =$ 7 and 8 TeV with the ATLAS detector

Systematic uncertainties

Source	$N(P_{c1})$	$N(P_{c2})$	$N(P_{c1} + P_{c2})$	$\Delta \phi$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays	$^{+1.8}_{-0.6}\%$	$^{+6.6}_{-9.2}\%$	$^{+1.6}_{-0.8}\%$	$^{+0.3}_{-0.0}\%$
Pentaquark modelling	$^{+21}_{-0}\%$	$^{+1}_{-22}\%$	$+8.7 \\ -4.4 \%$	$^{+1.6}_{-0.0}\%$
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling	$^{+14}_{-2}\%$	$^{+5}_{-44}\%$	$+9.2 \\ -9.1 \%$	$^{+3.6}_{-1.6}\%$
Combinatorial background	$^{+0.7}_{-4.0}\%$	$^{+18}_{-5}\%$	$+4.2 \\ -4.8 \%$	$^{+3.2}_{-0.0}\%$
B meson decays modelling	$^{+13}_{-25}\%$	$^{+28}_{-35}\%$	$^{+1.6}_{-9.3}\%$	$^{+0.5}_{-2.1}\%$
Total systematic uncertainty	$^{+28}_{-25}\%$	$^{+35}_{-61}\%$	$^{+14}_{-15}\%$	$^{+5.1}_{-2.7}\%$

Systematic uncertainties for measurements of the pentaquark yields under assumption of no interference effects, the yield of a sum of two pentaquarks and the relative phase between pentaquark amplitudes.

Source	$m(P_{c1})$	$\Gamma(P_{c1})$	$m(P_{c2})$	$\Gamma(P_{c2})$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays	$^{+0.06}_{-0.03}\%$	$+3.5 \\ -2.5\%$	$^{+0.07}_{-0.04}\%$	$^{+7}_{-13}\%$
Pentaquark modelling	$^{+0.6}_{-0.0}\%$	$^{+18}_{-0}\%$	$^{+0.2}_{-0.0}\%$	$^{+0}_{-33}\%$
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling	$^{+0.23}_{-0.05}\%$	$+9.2 \\ -1.2 \%$	$^{+0.24}_{-0.02}\%$	$^{+2}_{-62}\%$
Combinatorial background	$^{+0.03}_{-0.15}\%$	$^{+0}_{-11}\%$	$^{+0.01}_{-0.17}\%$	$^{+22}_{-4}\%$
B meson decays modelling	$^{+0.24}_{-0.00}\%$	$^{+21}_{-21}\%$	$^{+0.27}_{-0.14}\%$	$^{+17}_{-57}\%$
Total systematic uncertainty	$^{+0.7}_{-0.2}\%$	$^{+30}_{-24}\%$	$^{+0.4}_{-0.2}\%$	$^{+28}_{-91}\%$

Systematic uncertainties for measurements of the pentaquark masses and natural widths.

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector

Systematic uncertainties

Normalisations are free-floating	Systematic	di- J/ψ			$\int J/\psi + \psi(2S)$				
	Uncertainties (MeV)	m_0	Γ_0	m_1	Γ_1	m_2	Γ_2	<i>m</i> ₃	Γ_3
Uncertainties affecting signal and background shapes:	SPS theory	7	15	4	20	5	6		<1
	SPS di-charmonium $p_{\rm T}$	<1	8	4	14	5	7	<1	
muon momenta	Background MC statistics	<1	8	4	14	5	7	<1	
muon momenta	Mass resolution	19	34	3	21	4	9	<1	4
J/ψ mass resolution	Fit bias	43	58	10	56	11	16	13	41
MC simulation statistics	Nonclosure	<1				<1			
	Transfer factor				<1	16			
parameter pT0timesMPI	Presence of fourth resonance	29	49	11	108	60	18		
background transfer factor	Interference of fourth resonance			_	_			29	11
	Data statistics	50	119	34	88	30	39	28	130

Systematic and statistical uncertainties on the masses and natural widths (in MeV) of the interfering resonances from different sources in the di-J/ ψ and J/ ψ + ψ (2S) channels. The errors shown in the J/ ψ + ψ (2S) channel are for model A. In the case of an asymmetric uncertainty, only the larger direction is shown.