

A Common eh/hh Interaction Region and Detector for the LHC

K. D. J. André (CERN, U. Liverpool), N. Armesto (U. Santiago de Compostela), B. J. Holzer (CERN), M. Klein (U. Liverpool), P. Kostka (U. Liverpool), A.Polini (INFN Bologna), C. Schwanenberger (DESY), Y. Yamazaki (U. Kobe). on behalf of the LHeC Collaboration https://lhec.web.cern.ch/

The LHeC is the proposal of an upgrade of the High Luminosity-LHC to provide electron-hadron collisions with centre-of-mass energies O(1) TeV and instantaneous luminosities $O(10^{34})$ cm⁻²s⁻¹. The existing design identifies IP2 as the interaction point. In this talk we present initial accelerator considerations on a common IR to be built which alternately could serve eh and hh collisions at the HL-LHC, while other experiments would stay on *hh* in either condition [1]. A forward-backward symmetrised option of the LHeC detector is sketched which would permit extending the LHeC physics programme to also include aspects of hadron-hadron and heavy-ion physics.

[1] K. D. J. Andre et al., An experiment for electron-hadron scattering at the LHC, Eur. Phys. J. C 82 (2022) 1, 40, e-Print: 2201.02436 [hep-ex].

The Basic Concept

Energy $\sqrt{s} = \sqrt{(4 E_e E_p)} = 1.2-1.3 \text{ TeV}$ electrons: $E_e = 50-60$ GeV, protons: $E_p = 7$ TeV, ions Pb: E = 2.75 TeV

LHeC: a next generation TeV energy electron-proton collider. Large coverage of kinematic DIS range, down to 10⁻⁶ in x owing to high energy and approaching x=1 due to high luminosity. Electron-ion collisions extend the kinematic range in electron-ion by several orders of magnitude.HERA missed its electron-ion collider phase.

Default layout of the ERL configuration for the LHeC

beam is a spectator and both

proton beams have a large

crossing angle of 7 mrad

TCLMB Q4

175

Crab

Cavities

An intense electron beam (20mA current) is accelerated in three passes through two 1km linacs in an energy recovery linac racetrack configuration, which is positioned tangentially to the LHC (at IP2, or L for FCC).

The electron-proton interaction does not disturb the proton beams in a noticeable manner. Thus the LHeC may operate synchronously with the LHC. The installation of the ERL is in a separate tunnel, while the detector installation requires a typical LHC shutdown length of two years. The whole project concept therefore is that of adding instrumentation and providing crucial new physics, i.e. of making the LHC physics richer and thus sustaining its HL phase.

Luminosity: $10^{34} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow O(1) \text{ ab}^{-1} \text{ in } 10 \text{ years}$

ep - eh Physics at TeV Scale

This is 1000 times higher than HERA, owing to the high beam brightness of the HL-LHC, the large electron current from the ERL and may be achieved through the interaction of matched e and p beams at a β^* below 10cm.

LHeC Conceptional Design Report: arXiv:1206.2913, J. Phys. G 39 075001 (2012)

- Rich physics program at low and high luminosity and low and high-scale physics
- Polarised electrons are foreseen
- Details on the physics can be found in the references.
- Compared to HERA
 - 100 times the luminosity
 - 4 times larger \sqrt{s}
- e-p data in the late 2030s.

LHeC Calorimeters

Complete coverage to +- 5 in (pseudo)rapidi Backward Region: in DIS only deposits of E < E

do (LHeC)	EMC	HCAL			Calo (LHeC)	
	Barrel	Ecap Fwd	Barrel	Ecap Bwd		
adout, Absorber yers	Sci,Pb 38	Sci,Fe 58	Sci,Fe 45	Sci,Fe 50	Readout, Absorber Layers	
tegral Absorber Thickness [cn	a] 16.7	134.0	119.0	115.5	Integral Absorber Thickness [c	
ax, η_{\min} $g/E = a/\sqrt{E} \oplus b$ [9 $/X_0$	$ \begin{array}{c} 2.4, -1.9 \\ 12.4/1.9 \\ X_0 = 30.2 \end{array} $	1.9, 1.0 46.5/3.8 $\Lambda_I = 8.2$	1.6, -1.1 48.23/5.6 $\Lambda_I = 8.3$	-1.5, -0.6 51.7/4.3 $\Lambda_I = 7.1$	η_{\max}, η_{\min} $\sigma_E / E = a / \sqrt{E} \oplus b$ Λ_I / X_0	
tal area Sci [m]	2] 1174	1403	3853	1200	Total area Si	

arXiv:2201.02436

Conclusions

LHeC *eh* interaction region

proton optics:

- LHeC: L* = 15 m & β* = 10 cm
- FCC-eh: L* = 23 m & β* = 30 cm

Combined eh - hh IR

Two modes of operation:

- *hh* collisions in IP 1, 2, 5 and 8, no e⁻ beam
- eh collisions in IP 2 and hh collisions in IP 1, 5 and 8

HL-LHC with LHeC, $L^* = 15 \text{ m}$, $\beta^* = 10 \text{ cm}$, $\theta = 7 \text{ mrad}$

The LHeC detector (left below) is a large acceptance, precision device. Its design is determined by kinematics and high precision demands as from the H \rightarrow bb reaction in CC. The low radiation (1/100 that of pp) enables sensitive technology such as HV CMOS to be used. The need to ensure head-on ep collisions introduces a long, low field dipole to be inserted before the HCAL, the solenoid (right below) is a rather conventional magnet. The detector is complemented by forward (p,n) and backward (e, γ) tagging detectors. Its dimensions are 13 x 9 m² (LxD) which one may compare with CMS: 21 x 15 m². The detector will have

LHeC Detector Design

a modular structure to enable its rapid mounting in IP2.

CDR Update and beyond

IOP Publishing

- novel concept of a detector to alternately serve eh and hh collisions/physics
- Forward-backward detector symmetry to include hadron-hadron physics.

* LHeC: 50 GeV electron beam from an ERL colliding with a proton beam, TeV and correspondingly heavy ion beams of several TeV energy, from the LHC concurrent to the HL-LHC hadron-hadron operation.

First design studies show the feasibility of an IR and optics which alternately can serve eh and hh collisions, providing the seminal opportunity to realise both the LHeC and a new heavy ion detector at IP2, which is currently used by the Alice experiment

The symmetrisation of the design would detector make possible the study of *eh* and *hh* physics at IP2.