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Motivation

In the initial stages after the heavy-ion collision, the system possesses a lot of fluctuations, e.g., en-
ergy density fluctuations, number density fluctuations, temperature fluctuations, etc., at different length
scales. These can create disturbances in the flow. Signs of turbulence have been observed at the rel-
ativistic heavy-ion collision at high collision energies. We study the spectra of the initial fluctuations by
studying the temperature and velocity distribution in the collision region using the relativistic hydrody-
namic fluctuations formalism. While the velocity fluctuation can be studied for the initial stage, we study
the temperature fluctuations only in the pre-equilibrium stage, where the temperature can be defined
using the energy density and the concept of local thermal equilibrium. We study the scaling exponent
of turbulence spectra in the two planes and find that there are significant departures from isotropic tur-
bulence. We are interested to see whether the geometrical anisotropy is reflected in the anisotropic
turbulence spectra generated in the initial plasma.

Extract Power Spectrum from Collision Data

Q Turbulence is studied as fluctuations in the velocity field in the laminar flow.

u(x) = U(x) + u′(x) (1)

Here u(x) =< u >= limδx→0
∫
V

ud3x
V , is the space average of velocity at a fixed time over volume

V.

Q The velocity correlation tensor for the turbulent velocity at two points denoted by r and r+d is given
by,

Rij(r) =< u′i(x, t)u
′
j(x + r, t) > (2)

The Rij is related to the energy spectrum tensor Eij(K) by,

Eij(K) =
1

(2π)3

∫ ∫ ∫
e−iK.rRij(r)d(r) (3)

Q Non-relativistic to Relativistic: A fully relativistic turbulence has richer dynamics compared to the
non-relativistic case. Since the particles are colliding with relativistic velocities along the z-axis,
we need to take care of the Lorentz boost effect when we calculate the velocity correlation in the
longitudinal plane.

Rij = Λ(d/2)Λ(−d/2) < u′i(r − d/2),u′j(r + d/2) > (4)

Here Λ(∆x) is the boost which brings u(x + ∆x) to u(x), Λ(∆x)u(x + ∆x) = u(x).

The correlator is boosted to the local reference frame of the midpoint between the two points whose
correlation we are interested in. We obtain the Λ(d/2) matrices for an infinitesimal boost. If φA(x) is
a hydrodynamic fluctuation field, Phys. Rev. C 100, 024910 (2019)

[Λ(∆x)φ]µ = φµ − uµ(∆u.φ) + ∆uµ(u.φ) (5)

Q

Different length scales:
The structures of the rotating elements(eddies) in a turbulent system can be of different sizes.
Thus we have different length scales in our problem. The largest eddy formed in the system can
be of the largest length scale of the system. These large eddies extract kinetic energy from the
mean flow and use it to develop angular momentum. In relativistic heavy-ion collisions, most
of the energy gets converted into angular momentum and is eventually dissipated through the
smaller eddies. This is known as the energy cascade. This energy cascade can be expressed
in terms of the Reynolds number.

Re =
Fi
Fv

=
ρul

µd
(6)

Here Fi = ρl3u
2

l is the inertial force, and Fv = µd
u
l l

2 is the viscous force. In case of a large
Reynolds number, the fluid viscosity is less dominant over the fluid inertia, and we get larger
eddies. This is the regime of the Kolmogorov spectra.

u Here the cell size = 0.3 fm, and No. of cells in each direction= 48. System size l = 14.4 fm
in each direction. The diameter of the Au nuclei is around 12 fm. ⇒ kmin ≈ 0.5fm−1

u The Kolmogorov length scale is defined as the length scale of the smallest eddy. This can
be found out by making the Reynolds number very small in Eq. 6. It is given by,

ζ =

(
µ3
k

εd

)1/4

(7)

= lRe−3/4 from conservation of energy (8)

u Here the kinematic viscosity µk =
µd
ρ ≈ 10−7m2

s ≈ 1.69 GeV −1, and
εd ≥ 2 GeV/fm3⇒ kmax ≈ 5 . SciPost Phys. 10, 118 (2021)

For QGP systems, Re = 8.52⇒ From Eq. 8, kmax ≥ 4 Nuclear Physics B 921, 39-58 (2017)

Q In 1883, Kolmogorov hypothesized that the amount of energy in a turbulent flow carried by eddies
of diameter D, gravitate towards D5/3. But this is only valid within a specific range of length scales
known as the inertial subrange. Thus in this range, Kolmogorov spectra will have a power-law
nature where the kinetic energy is given by,

E(k) ≈ kν ≈ k−5/3 (9)

Longitudinal plane spectra
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Fig. 1: Turbulence velocity spectra for the longi. plane at
√
s = 200 GeV. ν = −1.59,−1.57,−1.66 for 0− 10%, 20− 40%, 40− 80% centrality collisions.

Transverse plane spectra
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Fig. 2: Turbulence velocity spectra for the trans. plane at
√
s = 200 GeV. ν = −1.26,−1.18,−1.39 for 0− 10%, 20− 40%, 40− 80% centrality collisions.

Observations:

• For longitudinal spectra, the coefficient of the power spectrum is around −1.6 u −5/3 in all the
cases. This is near the Kolmogorov limit. So, in this plane, the spectra resemble the Kolmogorov
spectrum. Here the inertial force is greater than the dissipative force.

• The power-law exponent does not remain the same in all these cases for the transverse plane
spectra. The exponents appear to be closer to −4/3 than the Kolmogorov value. Here, the
dissipative forces are important and more dissipation occurs at the smaller length scales.

• The change in centrality makes the particles distributed anisotropically on the transverse plane. It
causes an anisotropic pressure gradient on the transverse plane.

• We have also measured the exponent for the collision energies at 19.6 GeV , 39 GeV , 62.4 GeV ,
100 GeV , 130 GeV , and 200 GeV and the trend holds for all the RHIC energies.

Power spectrum of temperature fluctuations

• In the case of turbulent flow, the shear stress can be obtained from the equation of motion, where
the tangential stress depends on the velocity change perpendicular to the flow direction and the
total heat flow can be obtained from the conservation of energy where the heat flow occurs due to
the presence of the temperature gradient in the direction perpendicular to the flow direction.

• One can obtain the power spectrum of the temperature fluctuations as long as we know the tem-
perature at different points. To get the power spectrum, we have to obtain the energy of the system
at different length scales. The temperature can be calculated using the equation,

ε(x, y) = 12(4 + 3Nf )(
T 4

π2
) (10)

• We define m(r) =< TT ′ > as the temperature correlation between the two given points, and the
power spectrum for the temperature fluctuations is obtained from,

G(k) =
2

π

∫ ∞
0

m(r)krSinkrdr (11)
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Fig. 3: The power spectrum of the temperature fluctuations for 200 GeV Au-Au central collision events at τ = 1 fm/c and 6 fm/c

Observations:

• We find that though it is possible to fit the temperature spectrum by an approximate Gaussian
curve, which is a characteristic of an isotropic system, fluctuations present at smaller length scales
indicate the presence of anisotropies. This is further enhanced at later times when the spectrum
is better fitted with a Poissonian q-Gaussian distribution. There is thus an anisotropy in the tem-
perature fluctuation as well.

• The shift to smaller length scales indicates that energy is transferred to smaller eddies as time
progresses. The length scales of temperature fluctuations are similar to the length scale calculated
for the smallest eddies.
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