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Hints of current experimental data 1

Nine Moduli of the PMNS matrix elements constrained The T2K data on the octant of theta (23)
from the three-flavor global analysis: F. Capozzi et al and the quadrant of delta (Nature 2020)
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A key conjecture: Behind the observed pattern of lepton flavor mixing should lie a kind of non-Abelian discrete
flavor symmetry group, whose CG coefficients might essentially determine some elements of the PMNS matrix



Which symmetry is closer to the truth? 2

So far a lot of flavor symmetries for model building have been considered [two recent reviews, ZZX,
1909.09610 (Phys. Rept. 2020); F. Feruglio, A. Romanino, 1912.06028 (Rev. Mod. Phys. 2021)]

S;,S,,A,,A;,D,,D,, T,, T, A(27), A(48), ...
U(1);, SU(2); , modular, translational, ....

A guiding principle (bottom line) of model building: compatible with current experimental data

These facts prove No! These facts

MY theory! prove MY theory! You guys should choose the
theory that is most simple
and straightforward

a minimal flavor symmetry - j \‘/

symmetry of -t reflection? ccam 's Razar
P. Harrison, W. Scott 2002

How minimal is minimal: it belongs to a simple symmetry group and its predictions are as close as possible to data.



What is the mu-tau reflection symmetry? 3

It is a working flavor symmetry requiring the effective Majorana neutrino mass term to be invariant
under the transformations of left-handed neutrino fields [ZZX, Z.H. Zhao, 1512.04207 (RPP, 1996)]:
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How to identify the mu-tau reflection?

4

Different from the previous works, here let’s start purely from the PMNS matrix constrained by data

A data-driven conjecture:
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In the basis where the flavor eigenstates of 3 charged leptons are identified with their mass eigenstates, we have

the effective Majorana neutrino mass matrix

m, 0 0
M, = UDVUT :PU*CDVCUT'P:P(UDL,UT)*'P:'PM:'P D, = 0O m, O
0 0 my
Substitute this into the mass term: / \
1 1 l—
_[’mass — §V_L Mr/ (VL)C + h.c. - _Einass - §V_L (PM;P) (VL)C +h.c. = 5 [P(VL)C] MV [PVL] + h.c.
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In the seesaw case: a novel prediction 5

In the canonical seesaw mechanism with three right-handed neutrinos and lepton number violation
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neutrino oscillations <— light heavy —> collider physics, leptogenesis, LFV

The 3 x 3 PMNS matrix is not exactly unitary, but precision electroweak measurements and neutrino
oscillation data have constrained its unitarity to be good at the < 1 % level. So even in the presence
of slight unitarity violation one may still make the conjecture (ZZX, 2203.14185):

Ul = U > U ="PU"*C Dy = Diag{M,, M,, M,}
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The exact seesaw bridge: upD,U L RD N RT =

/ l novel prediction
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An application of this prediction 6

It may help constrain unitarity of the 3 x 3 PMNS matrix through the charged lepton flavor violation
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In the full seesaw (ZZX, D. Zhang, 2009.09717) or its EFT with one-loop matching (D Zhang, S. Zhou, 2107.12133):
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which allows us to constrain the unitarity hexagon using current experimental data on three radiative cLFV decays:
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Is there the same flavor symmetry behind? Vs

Yes, let’s consider the neutrino mass term in the canonical seesaw mechanism: M, =Y (H)

- — 1 0 M c
L, = Y, HNy + 5 TNQ* My Ny + e —_— | = = (V)] ( D) [(”L) +he.

My My | | Ny

Diagonalizing the 6 x 6 neutrino mass matrix:
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(s Q) (Mg MR) (s Q) - (o DN) > (VDU + BDyE =0

T UU"+ RRT = SST+QQT = I seesaw transfer of transformations
Unitarity: { UTU + 57 = RIR + Q1Q = I U=PU¢( — R=PR(
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T can be arbitrary unitary transformation

Substitute these into the above neutrino mass term c * c
e — P N, — 7
and require it to be invariant, we obtain the answer L (VL> ) R (NR)




Are we really in the landscape? 8

The seesaw picture is well consistent with the spirit of Weinberg’s EFT with a unique d=5 operator.

Energy scale Natural seesaws from O — (LHHT
a fundamental theory woA

effective low-energy
v-mass models

Cumrun Vafa’s
swampland conjecture

[\Swampland

A combination of the mu-tau reflection symmetry and the canonical seesaw at a super high energy
scale may help understand the origin of tiny neutrino masses and large flavor mixing. This minimal
flavor symmetry can be softly broken via renormalization-group-equation (RGE) running effects.



Concluding remarks 0

¢ Starting from current neutrino oscillation data, we have identified a minimal flavor symmetry of
Majorana neutrinos: the mu-tau reflection symmetry.

¢+ In this case one may resolve the octant of ¢,, and the quadrant of § via soft symmetry breaking,
e.g., with the help of the RGE-induced quantum corrections.

¢+ Combining this simple flavor symmetry with the canonical seesaw can help constrain the flavor
textures and lead to some interesting consequences.

¢ Further precision measurements will test such a symmetry and the viable neutrino mass models
into which it can be naturally embedded.




