

Probing New Physics using SMEFT

Anisha anisha@glasgow.ac.uk

ICHEP 2022

Based upon arXiv: 2111.05876, in collaboration with S. D. Bakshi, S. Banerjee, A. Biekötter, J. Chakrabortty, S. K. Patra, M. Spannowsky

July 8, 2022

SMEFT path to New Physics

Thus can act as an efficient way for data interpretation.

Warsaw basis operators

Grzadkowski et al. <u>1008.4884</u>

H^6			$H^2\psi^2 D$		ψ^4
Q_H	$(H^{\dagger}H)^3$	$Q_{Hl}^{(1)}$	$Q_{Hl}^{(1)} \qquad \left(H^{\dagger} i \overleftrightarrow{\mathcal{D}}_{\mu} H \right) (\bar{l}_{L} \gamma^{\mu} l_{L})$		$ig(ar{l}_L\gamma_\mu l_L)(ar{q}_L\gamma^\mu q_Lig)$
	H^4D^2	$Q_{Hl}^{(3)}$	$\left(H^{\dagger}i\tau^{I}\overleftrightarrow{\mathcal{D}}_{\mu}H\right)(\bar{l}_{L}\tau^{I}\gamma^{\mu}l_{L})$	$Q_{lq}^{(3)}$	$\left(ar{l}_L au^I \gamma_\mu l_L ight) \left(ar{q}_L au^I \gamma^\mu q_L ight)$
$Q_{H\Box}$	$\left(H^{\dagger}H)\Box(H^{\dagger}H)\right)$	Q_{He}	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight) \left(ar{e}_{R}\gamma^{\mu}e_{R} ight)$	Q_{ee}	$(ar e_R\gamma^\mu e_R)(ar e_R\gamma_\mu e_R)$
Q_{HD}	$\left(H^{\dagger}\mathcal{D}_{\mu}H)^{*}\left(H^{\dagger}\mathcal{D}^{\mu}H ight)$	$Q_{Hq}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{\mathcal{D}}_{\mu} H \right) \left(\bar{q}_L \gamma^{\mu} q_L \right)$	Q_{uu}	$(ar{u}_R\gamma^\mu u_R)(ar{u}_R\gamma_\mu u_R)$
	X^3	$Q_{Hq}^{(3)}$	$\left(H^{\dagger}i\tau^{I}\overleftrightarrow{\mathcal{D}}_{\mu}H\right)\left(\bar{q}_{L}\tau^{I}\gamma^{\mu}q_{L}\right)$	Q_{dd}	$ig(ar{d}_R\gamma^\mu d_R)(ar{d}_R\gamma_\mu d_R)$
Q_G	$f^{ABC}G_{\rho}{}^{A,\mu}G_{\mu}{}^{B,\nu}G_{\nu}{}^{C,\rho}$	Q_{Hu}	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight)\left(ar{u}_{R}\gamma^{\mu}u_{R} ight)$	Q_{eu}	$(ar{e}_R\gamma^\mu e_R)(ar{u}_R\gamma_\mu u_R)$
$Q_{ ilde{G}}$	$f^{ABC}\tilde{G}_{\rho}{}^{A,\mu}G_{\mu}{}^{B,\nu}G_{\nu}{}^{C,\rho}$	Q_{Hd}	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H\right)\left(\bar{d}_{R}\gamma^{\mu}d_{R}\right)$	Q_{ed}	$ig(ar e_R\gamma^\mu e_R)(ar d_R\gamma_\mu d_R)$
Q_W	$\epsilon^{IJK} W_{\rho}{}^{I,\mu} W_{\mu}{}^{J,\nu} W_{\nu}{}^{K,\rho}$	Q_{Hud}	$\left(\tilde{H}^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H\right)\left(\bar{u}_{R}\gamma^{\mu}d_{R}\right)+\text{h.c.}$	$Q_{ud}^{(1)}$	$ig(ar u_R\gamma^\mu u_R)(ar d_R\gamma_\mu d_R)$
$Q_{ ilde{W}}$	$\epsilon^{IJK} \tilde{W}_{\rho}{}^{I,\mu} W_{\mu}{}^{J,\nu} W_{\nu}{}^{K,\rho}$			$Q_{ud}^{(8)}$	$\Big(ar{u}_R rac{\lambda^A}{2} \gamma^\mu u_R \;) (ar{d}_R rac{\lambda^A}{2} \gamma_\mu d_R \;)$
H^2X^2		$H\psi^2 X$		Q_{le}	$\left(ar{l}_L\gamma^\mu l_L ight)\left(ar{e}_R\gamma_\mu e_R ight)$
Q_{HG}	$\left(H^{\dagger}H\right)G_{\mu\nu}{}^{A}G^{A,\mu\nu}$	Q_{eW}	$ig(ar{l}_L\sigma^{\mu u}e_Rig) au^IHW_{\mu u}{}^I$	Q_{lu}	$\left(ar{l}_L\gamma^\mu l_L ight)\left(ar{u}_R\gamma_\mu u_R ight)$
$Q_{H\tilde{G}}$	$\left(H^{\dagger}H\right)\tilde{G}_{\mu\nu}{}^{A}G^{A,\mu\nu}$	Q_{eB}	$\left(ar{l}_L\sigma^{\mu u}e_R ight)HB_{\mu u}$	Q_{ld}	$\left(ar{l}_L\gamma^\mu l_L ight)\left(ar{d}_R\gamma_\mu d_R ight)$
Q_{HW}	$\left(H^{\dagger}H\right)W_{\mu\nu}{}^{I}W^{I,\mu\nu}$	Q_{uG}	$\left(\bar{q}_L \sigma^{\mu\nu} \frac{\lambda^A}{2} u_R\right) \tilde{H} G_{\mu\nu}{}^A$	Q_{qe}	$(ar q_L\gamma^\mu q_L\;)(ar e_R\gamma_\mu e_R\;)$
$Q_{H\tilde{W}}$	$\left(H^{\dagger}H\right)\tilde{W}_{\mu\nu}{}^{I}W^{I,\mu\nu}$	Q_{uW}	$\left(ar{q}_L\sigma^{\mu u}u_R ight) au^I ilde{H}W_{\mu u}{}^I$	$Q_{qu}^{(1)}$	$(ar q_L \gamma_\mu q_L \;) (ar u_R \gamma^\mu u_R \;)$
Q_{HB}	$\left(H^{\dagger}H ight)B_{\mu u}B^{\mu u}$	Q_{uB}	$(ar q_L \sigma^{\mu u} u_R) ilde H B_{\mu u}$	$Q_{qu}^{(8)}$	$\left(ar{q}_L\gamma_\murac{\lambda^A}{2}q_L ight)\left(ar{u}_R\gamma^\murac{\lambda^A}{2}u_R ight)$
$Q_{H\tilde{B}}$	$\left(H^{\dagger}H\right) ilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$\left(ar{q}_L \sigma^{\mu u} rac{\lambda^A}{2} d_R ight) H \left(G_{\mu u} ight)^A$	$Q_{qd}^{(1)}$	$ig(ar q_L\gamma_\mu q_L \)(ar d_R\gamma^\mu d_R \)$
Q_{HWB}	$\left(H^{\dagger}\tau^{I}H\right)W_{\mu\nu}{}^{I}B^{\mu\nu}$	Q_{dW}	$ig(ar q_L\sigma^{\mu u}d_Rig) au^IHW_{\mu u}{}^I$	$Q_{qd}^{(8)}$	$\Big(ar{q}_L rac{\lambda^A}{2} \gamma^\mu q_L) (ar{d}_R rac{\lambda^A}{2} \gamma_\mu d_R)$
$Q_{H\tilde{W}B}$	$\left(H^{\dagger}\tau^{I}H\right)\tilde{W}_{\mu\nu}{}^{I}B^{\mu\nu}$	Q_{dB}	$(ar{q}_L \sigma^{\mu u} d_R \) \ H \ B_{\mu u}$	Q_{ledq}	$\left(ar{l}_L^j e_R \left) (ar{d}_R q_{Lj}) ight.$
$H^3\psi^2$			ψ^4	$Q_{quqd}^{(1)}$	$\left(ar{q}_L^j u_R \;) \epsilon_{ ext{jk}} \Big(ar{q}_L^k d_R \;) ight.$
Q_{eH}	$\left(H^{\dagger}H\right)(\bar{l}_{L}\mathbf{e}_{R}H)$	Q_{ll}	$(\bar{l}_L \gamma_\mu l_L) (\bar{l}_L \gamma^\mu l_L)$	$Q_{quqd}^{(8)}$	$\left(ar{q}_L^j rac{\lambda^A}{2} u_R ight) \epsilon_{ ext{jk}} \left(ar{q}_L^k rac{\lambda^A}{2} d_R ight)$
Q_{uH}	$\left(H^{\dagger} H ight) (ar{q}_L u_R ilde{H})$	$Q_{qq}^{(1)}$	$(ar q_L\gamma_\mu q_L \)(ar q_L\gamma^\mu q_L \)$	$Q_{lequ}^{(1)}$	$\left(ar{l}_{L}^{j}e_{R} ight)\epsilon_{ ext{jk}}\left(ar{q}_{L}^{k}u_{R} ight)$
Q_{dH}	$\Big(H^{\dagger}H)(ar{q}_L \ d_R \ H)$	$Q_{qq}^{(3)}$	$\left(ar{q}_L au^I \gamma_\mu q_L ight) \left(ar{q}_L au^I \gamma^\mu q_L ight)$	$Q_{lequ}^{(3)}$	$\left(ar{l}_L^j \sigma_{\mu u} e_R ight) \epsilon_{ m jk} \left(ar{q}_L^k \sigma_{\mu u} d_R ight)$

Warsaw basis operators

Grzadkowski et al. 1008.4884

H^6			$H^2\psi^2 D$		ψ^4
Q_H	$(H^{\dagger}H)^3$	$Q_{Hl}^{(1)}$	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight) (\bar{l}_{L}\gamma^{\mu}l_{L})$	$Q_{lq}^{(1)}$	$ig(ar{l}_L \gamma_\mu l_L) (ar{q}_L \gamma^\mu q_L)$
	H^4D^2	$Q_{Hl}^{\left(3 ight) }$	$\left(H^{\dagger}i\tau^{I}\overleftrightarrow{\mathcal{D}}_{\mu}H\right)(\bar{l}_{L}\tau^{I}\gamma^{\mu}l_{L})$	$Q_{lq}^{\left(3 ight) }$	$\left(ar{l}_L au^I \gamma_\mu l_L ight) \left(ar{q}_L au^I \gamma^\mu q_L ight)$
$Q_{H\Box}$	$\left(H^{\dagger}H)\Box(H^{\dagger}H)\right)$	Q_{He}	$\left(H^{\dagger} i \overleftrightarrow{\mathcal{D}}_{\mu} H \right) \left(\bar{e}_R \gamma^{\mu} e_R \right)$	Q_{ee}	$(ar{e}_R\gamma^\mue_R)(ar{e}_R\gamma_\mue_R)$
Q_{HD}	$\left(H^{\dagger}\mathcal{D}_{\mu}H)^{*}\left(H^{\dagger}\mathcal{D}^{\mu}H\right)\right.$	$Q_{Hq}^{(1)}$	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H\right)\left(ar{q}_{L}\gamma^{\mu}q_{L} ight)$	Q_{uu}	$(ar{u}_R\gamma^\mu u_R)(ar{u}_R\gamma_\mu u_R)$
	X^3	$Q_{Hq}^{(3)}$	$\left(H^{\dagger}i\tau^{I}\overleftrightarrow{\mathcal{D}}_{\mu}H\right)\left(\bar{q}_{L}\tau^{I}\gamma^{\mu}q_{L}\right)$	Q_{dd}	$ig(ar{d}_R\gamma^\mud_R)(ar{d}_R\gamma_\mud_R)$
Q_G	$f^{ABC}G_{\rho}{}^{A,\mu}G_{\mu}{}^{B,\nu}G_{\nu}{}^{C,\rho}$	Q_{Hu}	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight)\left(ar{u}_{R}\gamma^{\mu}u_{R} ight)$	Q_{eu}	$(ar e_R\gamma^\mu e_R)(ar u_R\gamma_\mu u_R)$
$Q_{ ilde{G}}$	$f^{ABC} \tilde{G}_{\rho}{}^{A,\mu} G_{\mu}{}^{B,\nu} G_{\nu}{}^{C,\rho}$	Q_{Hd}	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight)\left(ar{d}_{R}\gamma^{\mu}d_{R} ight)$	Q_{ed}	$ig(ar e_R\gamma^\mu e_R)(ar d_R\gamma_\mu d_R)$
Q_W	$\epsilon^{IJK} W_{\rho}{}^{I,\mu} W_{\mu}{}^{J,\nu} W_{\nu}{}^{K,\rho}$	Q_{Hud}	$\left(\tilde{H}^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H\right)\left(\bar{u}_{R}\gamma^{\mu}d_{R}\right) + \text{h.c.}$	$Q_{ud}^{(1)}$	$ig(ar u_R\gamma^\mu u_Rig)(ar d_R\gamma_\mu d_Rig)$
$Q_{ ilde W}$	$\epsilon^{IJK} \tilde{W}_{\rho}{}^{I,\mu} W_{\mu}{}^{J,\nu} W_{\nu}{}^{K,\rho}$			$Q_{ud}^{(8)}$	$\Big(ar{u}_R rac{\lambda^A}{2} \gamma^\mu u_R \;) (ar{d}_R rac{\lambda^A}{2} \gamma_\mu d_R \;)$
$H^2 X^2$		$H\psi^2 X$		Q_{le}	$\left(ar{l}_L\gamma^\mu l_L ight)\left(ar{e}_R\gamma_\mu e_R ight)$
Q_{HG}	$\left(H^{\dagger}H\right)G_{\mu\nu}{}^{A}G^{A,\mu\nu}$	Q_{eW}	$ig(ar{l}_L\sigma^{\mu u}e_Rig) au^IHW_{\mu u}{}^I$	Q_{lu}	$\left(ar{l}_L\gamma^\mu l_L ight)\left(ar{u}_R\gamma_\mu u_R ight)$
$Q_{H\tilde{G}}$	$\left(H^{\dagger}H\right)\tilde{G}_{\mu\nu}{}^{A}G^{A,\mu\nu}$	Q_{eB}	$ig(ar{l}_L\sigma^{\mu u}e_Rig)\;H\;B_{\mu u}$	Q_{ld}	$\left(ar{l}_L\gamma^\mu l_L ight)\left(ar{d}_R\gamma_\mu d_R ight)$
Q_{HW}	$\left(H^{\dagger}H\right)W_{\mu\nu}{}^{I}W^{I,\mu\nu}$	Q_{uG}	$\left(\bar{q}_L \sigma^{\mu\nu} \frac{\lambda^A}{2} u_R\right) \tilde{H} G_{\mu\nu}{}^A$	Q_{qe}	$(ar q_L\gamma^\mu q_L\;)(ar e_R\gamma_\mu e_R\;)$
$Q_{H\tilde{W}}$	$\left(H^{\dagger}H\right)\tilde{W}_{\mu\nu}{}^{I}W^{I,\mu\nu}$	Q_{uW}	$(ar{q}_L \sigma^{\mu u} u_R) au^I ilde{H} W_{\mu u}{}^I$	$Q_{qu}^{(1)}$	$(ar q_L\gamma_\mu q_L \;)(ar u_R\gamma^\mu u_R \;)$
Q_{HB}	$\left(H^{\dagger}H\right)B_{\mu u}B^{\mu u}$	Q_{uB}	$(ar q_L \sigma^{\mu u} u_R) ilde H B_{\mu u}$	$Q_{qu}^{(8)}$	$\left(ar{q}_L\gamma_\murac{\lambda^A}{2}q_L ight)\left(ar{u}_R\gamma^\murac{\lambda^A}{2}u_R ight)$
$Q_{H\tilde{B}}$	$\left(H^{\dagger}H ight) ilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$\left(ar{q}_L \sigma^{\mu u} rac{\lambda^A}{2} d_R ight) H G_{\mu u}{}^A$	$Q_{qd}^{(1)}$	$ig(ar q_L \gamma_\mu q_L \) (ar d_R \gamma^\mu d_R \)$
Q_{HWB}	$\left(H^{\dagger}\tau^{I}H\right)W_{\mu\nu}{}^{I}B^{\mu\nu}$	Q_{dW}	$ig(ar q_L\sigma^{\mu u}d_Rig) au^IHW_{\mu u}{}^I$	$Q_{qd}^{(8)}$	$\Big(ar{q}_L rac{\lambda^A}{2} \gamma^\mu q_L \;) (ar{d}_R rac{\lambda^A}{2} \gamma_\mu d_R \;)$
$Q_{H\tilde{W}B}$	$\left(H^{\dagger}\tau^{I}H\right)\tilde{W}_{\mu\nu}{}^{I}B^{\mu\nu}$	Q_{dB}	$(ar{q}_L \sigma^{\mu u} d_R \) \ H \ B_{\mu u}$	Q_{ledq}	$\left(ar{l}_L^j e_R \left. ight) (ar{d}_R q_{Lj})$
$H^3\psi^2$			ψ^4	$Q_{quqd}^{(1)}$	$\left(ar{q}_L^j u_R ~) \epsilon_{ ext{jk}} \Big(~ar{q}_L^k d_R ~) ight.$
Q_{eH}	$\left(H^{\dagger}H\right)\left(\bar{l}_{L}\mathbf{e}_{R}H\right)$	Q_{ll}	$\left(ar{l}_L \gamma_\mu l_L ight) \left(ar{l}_L \gamma^\mu l_L ight)$	$Q_{quqd}^{(8)}$	$\left(ar{q}_L^j rac{\lambda^A}{2} u_R ight) \epsilon_{ ext{jk}} \left(ar{q}_L^k rac{\lambda^A}{2} d_R ight)$
Q_{uH}	$\left(H^{\dagger} H ight) (ar{q}_L u_R ilde{H})$	$Q_{qq}^{(1)}$	$(ar q_L\gamma_\mu q_L \;)(ar q_L\gamma^\mu q_L \;)$	$Q_{lequ}^{(1)}$	$\left(ar{l}_{L}^{j}e_{R} ight)\epsilon_{ ext{jk}}\left(ar{q}_{L}^{k}u_{R} ight)$
Q_{dH}	$\Big(H^{\dagger}H)(ar{q}_L \ d_R \ H)$	$Q_{qq}^{(3)}$	$\left(ar{q}_L au^I \gamma_\mu q_L ight) \left(ar{q}_L au^I \gamma^\mu q_L ight)$	$Q_{lequ}^{\left(3 ight) }$	$\left(ar{l}_{L}^{j}\sigma_{\mu u}e_{R} ight)\epsilon_{ m jk}\left(ar{q}_{L}^{k}\sigma_{\mu u}d_{R} ight)$

Anisha, Bakshi, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky 2111.05876

Model Independent Analysis in SMEFT

Ellis, (Madigan), (Mimasu), (Murphy), Sanz & You <u>1803.03252</u>, <u>2012.02779</u> Dawson, Homiller & Lane <u>2007.01296</u> Ethier, Magni, Maltoni, Mantani, Nocera Rojo, Slade, Vryonidou & Zhang <u>2105.00006</u> Brivio, Bruggiser, Geoffray, Killian, Kramer <u>2108.01094</u> da Silva Almeida, Alves, Éboli & Gonzalez-Garcia <u>2108.04828</u> Anisha, Bakshi, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky <u>2111.05876</u>

Contribution of operators on different observables

$$O_{NP} = O_{SM} + \sum_{i} \frac{\mathscr{A}_{i}}{\Lambda^{2}} C_{i}.$$

Leading order contributions

Linear in $\frac{1}{\Lambda^2}$

EWPO

Using input parameter scheme $\{\alpha, G_F, M_Z\}$, tree level contributions are calculated.

$$\delta G_{F} = \frac{G_{F}}{\Lambda^{2}} \left(2v^{2}C_{Hl}^{3} - v^{2}C_{ll} \right),$$

$$\delta \alpha = \frac{2 \alpha g_{W}g_{Y}v^{2}}{(g_{W}^{2} + g_{Y}^{2})} \frac{C_{HWB}}{\Lambda^{2}},$$

$$\delta m_{Z}^{2} = \frac{1}{2\sqrt{2}} \frac{m_{Z}^{2}}{G_{F}} \frac{C_{HD}}{\Lambda^{2}} + \frac{2^{1/4}\sqrt{\pi\alpha}m_{Z}}{G_{F}^{3/2}} \frac{C_{HWB}}{\Lambda^{2}}.$$

$$+ \frac{H^{2}\psi^{2}D}{Q_{Hl}^{(1)}}, Q_{Hq}^{(3)}, Q_{Hq}^{(1)}, Q_{Hq}^{(3)}, Q_{Hu}, Q_{Hd}, Q_{He}$$

$H^2\psi^2D$						
$Q_{Hl}^{(1)}$	$\left(H^\dagger i \overleftrightarrow{\mathcal{D}}_\mu H ight) (ar{l}_L \gamma^\mu l_L)$					
$Q_{Hl}^{\left(3 ight) }$	$\left(H^{\dagger} i au^{I} \overleftrightarrow{\mathcal{D}}_{\mu} H ight) (ar{l}_{L} au^{I} \gamma^{\mu} l_{L})$					
Q_{He}	$\left(H^{\dagger} i \overleftrightarrow{\mathcal{D}}_{\mu} H ight) (ar{e}_R \gamma^{\mu} e_R)$					
$Q_{Hq}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{\mathcal{D}}_{\mu} H ight) (ar{q}_L \gamma^{\mu} q_L)$					
$Q_{Hq}^{\left(3 ight) }$	$\left(H^{\dagger} i au^{I} \overleftrightarrow{\mathcal{D}}_{\mu} H ight) (ar{q}_{L} au^{I} \gamma^{\mu} q_{L})$					
Q_{Hu}	$\left(H^{\dagger}i\overleftrightarrow{\mathcal{D}}_{\mu}H ight) \left(ar{u}_{R}\gamma^{\mu}u_{R} ight.)$					
Q_{Hd}	$\left(H^{\dagger} i \overleftrightarrow{\mathcal{D}}_{\mu} H ight) (\bar{d}_R \gamma^{\mu} d_R)$					

Couplings of pair of fermions with gauge bosons are modified

Assuming flavour independence

Brivio & Trott <u>1706.08945</u> Dawson & Giardino <u>1909.02000</u>

Dim-6 operators affecting Higgs Production and decays

ATLAS-CONF-2020-053

Higgs Production channels at leading order

• Higgs coupling with gauge bosons

 $\begin{aligned} Q_{HG} &= \left(H^{\dagger}H\right) G_{\mu\nu}{}^{a}G^{a,\mu\nu} \rightarrow C_{HG}\nu h G_{\mu}{}^{a}G^{a,\nu} \\ Q_{HW} &= \left(H^{\dagger}H\right) W_{\mu\nu}{}^{I}W^{I,\mu\nu} \rightarrow C_{HW}\nu h W_{\mu}W^{\nu} \\ Q_{HWB} &= \left(H^{\dagger}\tau^{I}H\right) W_{\mu\nu}{}^{I}B^{\mu\nu} \\ Q_{HB} &= \left(H^{\dagger}H\right) B_{\mu\nu}B^{\mu\nu} \\ Q_{HD} &= \left(H^{\dagger}D_{\mu}H\right)^{*}(H^{\dagger}D^{\mu}H) \end{aligned}$

- Higgs coupling with top pairs $Q_{tH} = (H^{\dagger}H)(\bar{q}_{L} t_{R} \widetilde{H}) \rightarrow C_{tH}v^{2} \overline{t}th$
- Couplings of pair of fermions with gauge bosons & $\bar{\psi}\psi W(Z)H$ new contact interactions $Q_{Hu} = (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{R}\gamma^{\mu}u_{R}) \rightarrow C_{Hu}v^{2} \bar{u}_{R}\gamma_{\mu}u_{R}Z^{\mu}$ $\rightarrow C_{Hu}v \bar{u}_{R}\gamma_{\mu}u_{R}Z^{\mu}h$ $Q_{Hq}^{(1)}, Q_{Hq}^{(3)}, Q_{Hu}, Q_{Hd}$
- Couplings of top pairs with gluons $\overline{t}tg$ $Q_{tG} = (\bar{q}_L \sigma^{\mu\nu} \frac{\lambda^a}{2} t_R) \widetilde{H} G_{\mu\nu}{}^a$
- For triple gluon couplings $Q_G = f^{abc} G_{\rho}^{\ a,\mu} G_{\mu}^{\ b,\nu} G_{\nu}^{\ c,\rho}$

Dim-6 operators affecting Higgs Production and decays

From these combinations of production and decay channels, μ is given.

$$\begin{aligned} \mu &= \frac{\sigma \left(pp \to h \right)}{\sigma \left(pp \to h \right)_{SM}} \frac{BR \left(h \to f \right)}{BR \left(h \to f \right)_{SM}} \,. \end{aligned} \qquad \text{keeping terms linear in } \frac{1}{\Lambda^2} \end{aligned}$$

Brivio 2012.11343 ATLAS-CONF-2020-053 Fitmaker- Ellis, Madigan, Mimasu, Sanz & You, 2012.02779

Using SMEFTsim, the theoretical predictions are obtained.

Dim-6 operators affecting DiHiggs

 $g \rightarrow \mathcal{O}$ • Tri-linear Higgs coupling get affected $Q_H = \left(H^{\dagger}H\right)^3 \to C_H v^3 h^3$ h 000000 00000 g • Higgs gluon coupling get affected $\begin{aligned} Q_{HG} &= \left(H^{\dagger}H\right) G_{\mu\nu}{}^{a}G^{a,\mu\nu} \rightarrow C_{HG}\nu h \, G_{\mu}{}^{a}G^{a,\nu} \\ &\rightarrow C_{HG} \, h^{2} \, G_{\mu}{}^{a}G^{a,\nu} \end{aligned}$ h 8 00000 • Higgs coupling with top pairs get affected $Q_{tH} = (H^{\dagger}H)(\bar{q}_{t} \ t_{R} \ \widetilde{H}) \rightarrow C_{tH}v^{2} \ \overline{t}th$ • Field redefinition of Higgs $Q_{H\square} = (H^{\dagger}H) \square (H^{\dagger}H)$ h

At leading order $gg \rightarrow hh$

Buchalla, Capozi, Celis, Heinrich & Scyboz <u>1806.05162</u> Heinrich, Jones, Kerner & Scyboz <u>2006.16877</u>

9

Operators relevant to Diboson (WW/ WZ) process.

• For triple gauge couplings

 $Q_W = \epsilon^{IJK} W_{\rho}^{\ I,\mu} W_{\mu}^{\ J,\nu} W_{\nu}^{\ K,\rho}$ $Q_{HWB} = \left(H^{\dagger} \tau^I H \right) W_{\mu\nu}^{\ I} B^{\mu\nu}$

• Couplings of pair of fermions with gauge bosons $\bar{\psi}\psi V$ get affected

 $H^2 \psi^2 D$: $Q_{Hl}^{(1)}, Q_{Hl}^{(3)}, Q_{Hq}^{(1)}, Q_{Hq}^{(3)}, Q_{Hu}, Q_{Hu}, Q_{Hd}, Q_{He}$

• Due to input parameter scheme

 $Q_{HD} = (H^{\dagger}D_{\mu}H)^{*}(H^{\dagger}D^{\mu}H)$ $Q_{ll} = (\bar{l}_{L}\gamma_{\mu}l_{L})(\bar{l}_{L}\gamma^{\mu}l_{L}).$

Baglio, Dawson & Homiller <u>1909.11576</u> Berthier, Bjørn & Trott <u>1606.06693</u>

WW/WZ production with leptonic decays

 $W(Z, \gamma)$

W(W

Relevant SMEFT dimension-6 operators

Anisha, Bakshi, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky 2111.05876

Data sets considered

LEP-1 and 2 data

- EWPO
- Diboson data

LHC Run-I and II data

- Higgs signal strengths
- Simplified template crosssections
- Diboson production distribution
- Di-Higgs signal strengths

277 measurements

$ \begin{array}{ c c c c c } \mbox{Electrowesk Precision Observables (EWPO)} & & & & & & & & & & & & & & & & & & &$		Observables	no. of measurements	2020
$ \begin{array}{ c c c c c c } & \Gamma_{Z,} \sigma_{had}^{0}, R_{i}^{0}, A_{i}, A_{l}(\text{SLD}), A_{FB}^{l}, \sin^{2}\theta_{\text{eff}}^{l}(\text{Tev}), & 15 \\ \hline R_{c}^{0}, A_{c}, A_{FB}^{0}, R_{0}^{0}, A_{b}^{1}A_{FB}^{1}, m_{W}, \Gamma_{W} & & & & & & \\ \hline & & & & & & & & & & & &$	Electrowe	ak Precision Observables (EWPO)		
$ \begin{array}{ c c c c c } R_{c}^{0}, A_{c}, A_{FB}^{0}, R_{b}^{0}, A_{b}, A_{FB}^{h}, m_{W}, \Gamma_{W} & \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ LEP-2 WW data & \hline \\ 7 \mbox{ Higgs Data} & \hline \\ ATLAS & CMS combination & 20 & \hline \\ ATLAS & CMS combination & \mu(h \to \mu\mu) & 1 & \hline \\ n \mbox{ ATLAS } & CMS combination & \mu(h \to \mu\mu) & 1 & \hline \\ n \mbox{ ATLAS } & CMS combination & \mu(h \to \mu\mu) & 1 & \hline \\ n \mbox{ ATLAS } & \mu(h \to Z\gamma) & 1 & 10 & 1 & \hline \\ \mu(h \to Z\gamma) \mbox{ at 139 } \mbox{ B}^{-1} & 1 & 1 & 1 & \hline \\ \mu(h \to \mu\mu) \mbox{ at 139 } \mbox{ B}^{-1} & 1 & 1 & 1 & \hline \\ \mu(h \to bb) \mbox{ in VBF and } tH \mbox{ at 139 } \mbox{ B}^{-1} & 1 & 1 & 1 & \hline \\ n \mbox{ ATLAS } & \mu(h \to \tau\tau) \mbox{ at 35.9} \mbox{ ATLAS } & \mu(h \to b\bar{b}) \mbox{ in VBF at 35.9} \mbox{ ATLAS } & \mu(h \to b\bar{b}) \mbox{ in VB at 35.9} \mbox{ At LAS } & \mu(h \to b\bar{b}) \mbox{ in V h at 35.9} \mbox{ At 137 } \mbox{ B}^{-1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	$\Gamma_Z, \sigma^0_{had},$	$R_l^0, A_l, A_l(\text{SLD}), A_{FB}^l, \sin^2 \theta_{\text{eff}}^l(\text{Tev}),$	15	\checkmark
$\begin{array}{ $	$R_c^0,$	$A_c, A_{FB}^c, R_b^0, A_b, A_{FB}^b, m_W, \Gamma_W$		\checkmark
Higgs Data 20 7 and 8 TeV ATLAS & CMS combination $\mu(h \rightarrow \mu\mu)$ 1 Run-I data ATLAS $\mu(h \rightarrow Z\gamma)$ 1 13 TeV ATLAS $\mu(h \rightarrow Z\gamma)$ at 139 fb ⁻¹ 1 13 TeV ATLAS $\mu(h \rightarrow Z\gamma)$ at 139 fb ⁻¹ 1 13 TeV ATLAS $\mu(h \rightarrow \mu\mu)$ at 139 fb ⁻¹ 1 $\mu(h \rightarrow \mu)$ at 139 fb ⁻¹ 1 1 $\mu(h \rightarrow bb)$ in VBF and tH at 139 fb ⁻¹ 4 1 $\mu(h \rightarrow bb)$ in VBF and tH at 139 fb ⁻¹ 1+1 1 STXS Higgs combination 25 5 STXS h $\rightarrow \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 42 2 $\mu(h \rightarrow bb)$ in VB at 35.9/41.5 fb ⁻¹ 23 1 $\mu(h \rightarrow WW)$ in ggF at 137 fb ⁻¹ 23 1 $\mu(h \rightarrow WW)$ in ggF at 137 fb ⁻¹ 1 1 13 TeV CMS $\mu(h \rightarrow \mu\mu)$ at 137 fb ⁻¹ 3 1 Run-II data $\mu(h \rightarrow \tau \tau/WW)$ in t th at 137 fb ⁻¹ 3 1 13 TeV CMS $\mu(h \rightarrow \pi \eta)$ at 137 fb ⁻¹ 1 1 Run-II data $\mu(h \rightarrow \pi \eta)$ at 137 fb ⁻¹ 1 1 S		LEP-2 WW data	74	\checkmark
ATLAS & CMS combination207 and 8 TeVATLAS & CMS combination $\mu(h \rightarrow \mu\mu)$ 1Run-I dataATLAS $\mu(h \rightarrow Z\gamma)$ 113 TeV ATLAS Run-II data $\mu(h \rightarrow Z\gamma)$ at 139 fb ⁻¹ 1 $\mu(h \rightarrow \mu\mu)$ at 139 fb ⁻¹ 11 $\mu(h \rightarrow \mu\mu)$ at 139 fb ⁻¹ 4 $\mu(h \rightarrow bb)$ in VBF and ttH at 139 fb ⁻¹ 1+1STXS Higgs combination25STXS h $\rightarrow \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 1113 TeV CMS $\mu(h \rightarrow b\bar{b})$ in VBF and tp to 137 fb ⁻¹ 23 $\mu(h \rightarrow b\bar{b})$ in VBF at 139 fb ⁻¹ 1113 TeV CMS $\mu(h \rightarrow b\bar{b})$ in Vh at 35.9/41.5 fb ⁻¹ 23 $\mu(h \rightarrow b\bar{b})$ in Vh at 35.9/41.5 fb ⁻¹ 2 $\mu(h \rightarrow b\bar{b})$ in Vh at 37.9/41.5 fb ⁻¹ 313 TeV CMS $\mu(h \rightarrow \mu\mu)$ at 137 fb ⁻¹ 1 $\mu(h \rightarrow T\tau/WW)$ in tth at 137 fb ⁻¹ 3STXS h $\rightarrow \gamma\gamma$ at 137 fb ⁻¹ 11STXS h $\rightarrow \gamma\gamma$ at 137 fb ⁻¹ 27STXS h $\rightarrow \gamma\gamma$ at 137 fb ⁻¹ 27STXS h $\rightarrow ZZ$ at 137 fb ⁻¹ 18ATLAS Zij 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 bins		Higgs Data		
7 and 8 TeV ATLAS & CMS combination $\mu(h \rightarrow \mu\mu)$ 1 Run-I data ATLAS $\mu(h \rightarrow Z\gamma)$ 1 13 TeV ATLAS $\mu(h \rightarrow Z\gamma)$ at 139 fb ⁻¹ 1 13 TeV ATLAS $\mu(h \rightarrow \mu\mu)$ at 139 fb ⁻¹ 1 $\mu(h \rightarrow \mu\mu)$ at 139 fb ⁻¹ 1 1 $\mu(h \rightarrow \mu\mu)$ at 139 fb ⁻¹ 4 $\mu(h \rightarrow bb)$ in VBF and ttH at 139 fb ⁻¹ 1+1 STXS Higgs combination 25 STXS h $\rightarrow \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 42 STXS h $\rightarrow WW$ in ggF, VBF at 139 fb ⁻¹ 11 CMS combination at up to 137 fb ⁻¹ 23 $\mu(h \rightarrow b\bar{b})$ in Vh at 35.9/41.5 fb ⁻¹ 2 $\mu(h \rightarrow WW)$ in ggF at 137 fb ⁻¹ 1 13 TeV CMS $\mu(h \rightarrow \mu\mu)$ at 137 fb ⁻¹ 3 Run-II data $\mu(h \rightarrow \tau\tau/WW)$ in $t\bar{t}h$ at 137 fb ⁻¹ 3 STXS h $\rightarrow \gamma\gamma$ at 137 fb ⁻¹ 3 3 STXS h $\rightarrow \gamma\gamma$ at 137 fb ⁻¹ 11 3 Bun-II data $\mu(h \rightarrow \gamma\gamma$ at 137 fb ⁻¹ 11 STXS h $\rightarrow \gamma\gamma$ at 137 fb ⁻¹ 11 3 STXS h $\rightarrow \gamma\gamma$ at 137 fb ⁻¹ 12 STXS h		ATLAS & CMS combination	20	\checkmark
Run-I dataATLAS $\mu(h \to Z\gamma)$ 1 $\mu(h \to Z\gamma)$ at 139 fb ⁻¹ 1113 TeV ATLAS Run-II data $\mu(h \to \mu\mu)$ at 139 fb ⁻¹ 1 $\mu(h \to \tau\tau)$ at 139 fb ⁻¹ 4 $\mu(h \to bb)$ in VBF and ttH at 139 fb ⁻¹ 4 $\mu(h \to bb)$ in VBF and ttH at 139 fb ⁻¹ 1+1STXS Higgs combination25STXS $h \to \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 42STXS $h \to WW$ in ggF, VBF at 139 fb ⁻¹ 11 $\mu(h \to b\bar{b})$ in Vh at 35.9/41.5 fb ⁻¹ 23 $\mu(h \to b\bar{b})$ in Vh at 35.9/41.5 fb ⁻¹ 2 $\mu(h \to WW)$ in ggF at 137 fb ⁻¹ 113 TeV CMS $\mu(h \to \mu\mu)$ at 137 fb ⁻¹ Run-II data $\mu(h \to \tau\tau/WW)$ in $t\bar{t}h$ at 137 fb ⁻¹ $\mu(h \to WX)$ in $gr at 137$ fb ⁻¹ 3STXS $h \to WW$ at 137 fb ⁻¹ 11STXS $h \to WW$ at 137 fb ⁻¹ 11STXS $h \to T\tau$ at 137 fb ⁻¹ 11STXS $h \to ZZ$ at 137 fb ⁻¹ 18ATLAS Zii 13 TeV $\Delta\phi_{ij}$ at 36.1 fb ⁻¹ 6 bins	$7~{\rm and}~8~{\rm TeV}$	ATLAS & CMS combination $\mu(h\to\mu\mu)$	1	\checkmark
$ \begin{array}{c cccc} & \mu(h \rightarrow Z\gamma) \mbox{ at } 139 \mbox{ fb}^{-1} & 1 & \\ & \mu(h \rightarrow \mu\mu) \mbox{ at } 139 \mbox{ fb}^{-1} & 1 & \\ & \mu(h \rightarrow \mu\mu) \mbox{ at } 139 \mbox{ fb}^{-1} & 4 & \\ & \mu(h \rightarrow bb) \mbox{ in } VBF \mbox{ and } ttH \mbox{ at } 139 \mbox{ fb}^{-1} & 1 + 1 & \\ & & & \\ & \mu(h \rightarrow bb) \mbox{ in } VBF \mbox{ and } ttH \mbox{ at } 139 \mbox{ fb}^{-1} & 1 + 1 & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ &$	Run-I data	ATLAS $\mu(h \to Z\gamma)$	1	\checkmark
13 TeV ATLAS Run-II data $\mu(h \to \mu\mu)$ at 139 fb ⁻¹ 1 $\mu(h \to bb)$ in VBF and ttH at 139 fb ⁻¹ 4 $\mu(h \to bb)$ in VBF and ttH at 139 fb ⁻¹ 1+1 STXS Higgs combination 25 STXS $h \to \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 42 STXS $h \to \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 11 STXS $h \to \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 10 Image: stress of the stress of		$\mu(h \to Z\gamma)$ at 139 fb ⁻¹	1	\checkmark
Is rev ATLAS $\mu(h \to \tau\tau)$ at 139 fb ⁻¹ 4 Run-II data $\mu(h \to bb)$ in VBF and ttH at 139 fb ⁻¹ 1+1 STXS Higgs combination 25 STXS $h \to \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 42 STXS $h \to \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 42 STXS $h \to \gamma\gamma/ZZ/b\bar{b}$ at 139 fb ⁻¹ 42 STXS $h \to WW$ in ggF, VBF at 139 fb ⁻¹ 11 CMS combination at up to 137 fb ⁻¹ 23 $\mu(h \to b\bar{b})$ in Vh at 35.9/41.5 fb ⁻¹ 2 $\mu(h \to WW)$ in ggF at 137 fb ⁻¹ 1 13 TeV CMS $\mu(h \to \mu\mu)$ at 137 fb ⁻¹ 4 Run-II data $\mu(h \to \tau\tau/WW)$ in $t\bar{t}h$ at 137 fb ⁻¹ 3 STXS $h \to WW$ at 137 fb ⁻¹ 11 5 STXS $h \to WW$ at 137 fb ⁻¹ 11 11 STXS $h \to WW$ at 137 fb ⁻¹ 11 11 STXS $h \to \gamma\gamma$ at 137 fb ⁻¹ 11 11 STXS $h \to \chi\gamma$ at 137 fb ⁻¹ 11 11 STXS $h \to \chi\gamma$ at 137 fb ⁻¹ 11 11 STXS $h \to \chi\gamma$ at 137 fb ⁻¹ 12 13 ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 bins 12 bins	13 ToV ATI AS	$\mu(h \to \mu\mu)$ at 139 fb ⁻¹	1	\checkmark
$ \begin{array}{ c c c c c } \mu(h \rightarrow bb) \mbox{ in VBF and } ttH \mbox{ at } 139 \mbox{ fb}^{-1} & 1+1 & \\ \hline STXS \mbox{ Higgs combination} & 25 & \\ STXS \mbox{ h \to $\gamma\gamma/ZZ/b\bar{b}$ \mbox{ at } 139 \mbox{ fb}^{-1}$ & 42 & \\ \hline STXS \mbox{ h \to $\gamma\gamma/ZZ/b\bar{b}$ \mbox{ at } 139 \mbox{ fb}^{-1}$ & 11 & \\ \hline STXS \mbox{ h \to WW \mbox{ in } ggF, VBF \mbox{ at } 139 \mbox{ fb}^{-1}$ & 11 & \\ \hline STXS \mbox{ h \to WW \mbox{ in } ggF, VBF \mbox{ at } 139 \mbox{ fb}^{-1}$ & 23 & \\ \mu(h \rightarrow b\bar{b}) \mbox{ in } Vh \mbox{ at } 35.9/41.5 \mbox{ fb}^{-1}$ & 2 & \\ \mu(h \rightarrow WW) \mbox{ in } ggF \mbox{ at } 137 \mbox{ fb}^{-1}$ & 1 & \\ \mu(h \rightarrow WW) \mbox{ in } ggF \mbox{ at } 137 \mbox{ fb}^{-1}$ & 1 & \\ \mu(h \rightarrow \mu\mu) \mbox{ at } 137 \mbox{ fb}^{-1}$ & 3 & \\ \hline STXS \mbox{ h \to $\tau\tau$ at } 137 \mbox{ fb}^{-1}$ & 11 & \\ STXS \mbox{ h \to $\tau\tau$ at } 137 \mbox{ fb}^{-1}$ & 11 & \\ STXS \mbox{ h \to $\gamma\gamma$ at } 137 \mbox{ fb}^{-1}$ & 11 & \\ \hline STXS \mbox{ h \to $\gamma\gamma$ at } 137 \mbox{ fb}^{-1}$ & 18 & \\ \hline \mbox{ ATLAS } WZ \mbox{ 13 TeV } m_T^{WZ} \mbox{ at } 139 \mbox{ fb}^{-1}$ & 12 \mbox{ bins} & \\ \hline \end{tabular}$	Run-II data	$\mu(h \to \tau \tau)$ at 139 fb ⁻¹	4	
$\begin{array}{ c c c c c c } & STXS \mbox{ Higgs combination} & 25 & \\ STXS \mbox{h \to $\gamma\gamma/ZZ/b\bar{b}$ at 139 \mbox{fb^{-1}}$} & 42 & \\ STXS \mbox{$h$ \to WW in ggF, VBF at 139 \mbox{fb^{-1}}$} & 11 & \\ & STXS \mbox{h \to WW in ggF, VBF at 139 \mbox{fb^{-1}}$} & 23 & \\ & \mbox{$\mu(h \to b\bar{b}$) in Vh at 35.9/41.5 \mbox{fb^{-1}}$} & 23 & \\ & \mbox{$\mu(h \to WW$) in ggF at 137 \mbox{$fb^{-1}$}$} & 2 & \\ & \mbox{$\mu(h \to WW$) in ggF at 137 \mbox{fb^{-1}}$} & 1 & \\ & \mbox{$\mu(h \to \mu\mu$) at 137 \mbox{$fb^{-1}$}$} & 4 & \\ & \mbox{$\mu(h \to \tau\tau/WW$) in t\bar{t}h$ at 137 \mbox{fb^{-1}}$} & 3 & \\ & \mbox{$STXS h \to $\tau\tau$ at 137 \mbox{fb^{-1}}$} & 11 & \\ & \mbox{$STXS h \to $\tau\tau$ at 137 \mbox{fb^{-1}}$} & 11 & \\ & \mbox{$STXS h \to $\gamma\gamma$ at 137 \mbox{fb^{-1}}$} & 27 & \\ & \mbox{$STXS h \to $\gamma\gamma$ at 137 \mbox{fb^{-1}}$} & 27 & \\ & \mbox{$STXS h \to $\gamma\gamma$ at 137 \mbox{fb^{-1}}$} & 18 & \\ \hline \mbox{$ATLAS WZ 13 $TeV m_T^{WZ} at 36.1 \mbox{fb^{-1}}$} & 12 \mbox{$bins$} & \\ \hline \end{array}$		$\mu(h \to bb)$ in VBF and ttH at 139 fb ⁻¹	1+1	
$\begin{array}{ c c c c c c }\hline & STXS \ h \rightarrow \gamma\gamma/ZZ/b\bar{b} \ at \ 139 \ fb^{-1} & 42 \\ STXS \ h \rightarrow WW \ in \ ggF, \ VBF \ at \ 139 \ fb^{-1} & 11 \\ \hline \\ STXS \ h \rightarrow WW \ in \ ggF, \ VBF \ at \ 139 \ fb^{-1} & 23 \\ \mu(h \rightarrow b\bar{b}) \ in \ Vh \ at \ 35.9/41.5 \ fb^{-1} & 2 \\ \mu(h \rightarrow WW) \ in \ ggF \ at \ 137 \ fb^{-1} & 1 \\ \mu(h \rightarrow WW) \ in \ ggF \ at \ 137 \ fb^{-1} & 1 \\ \mu(h \rightarrow \mu\mu) \ at \ 137 \ fb^{-1} & 4 \\ \hline \\ Run-II \ data & \mu(h \rightarrow \tau\tau/WW) \ in \ t\bar{t}h \ at \ 137 \ fb^{-1} & 3 \\ STXS \ h \rightarrow WW \ at \ 137 \ fb^{-1} & 1 \\ STXS \ h \rightarrow \tau\tau \ at \ 137 \ fb^{-1} & 11 \\ STXS \ h \rightarrow \gamma\gamma \ at \ 137 \ fb^{-1} & 11 \\ STXS \ h \rightarrow \gamma\gamma \ at \ 137 \ fb^{-1} & 11 \\ STXS \ h \rightarrow \gamma\gamma \ at \ 137 \ fb^{-1} & 11 \\ STXS \ h \rightarrow \gamma\gamma \ at \ 137 \ fb^{-1} & 11 \\ STXS \ h \rightarrow \gamma\gamma \ at \ 137 \ fb^{-1} & 11 \\ STXS \ h \rightarrow ZZ \ at \ 137 \ fb^{-1} & 18 \\ \hline \hline \\ \hline \ ATLAS \ Zii \ 13 \ TeV \ M_T^W^Z \ at \ 36.1 \ fb^{-1} & 12 \ bins \\ \hline \end{array}$		STXS Higgs combination	25	\checkmark
$ \begin{array}{ c c c c c c } & {\rm STXS} \ h \to WW \ {\rm in} \ {\rm ggF}, {\rm VBF} \ {\rm at} \ 139 \ {\rm fb}^{-1} & 11 & \\ & {\rm CMS} \ {\rm combination} \ {\rm at} \ {\rm up} \ {\rm to} \ 137 \ {\rm fb}^{-1} & 23 & \\ & \mu(h \to b\bar{b}) \ {\rm in} \ Vh \ {\rm at} \ 35.9/41.5 \ {\rm fb}^{-1} & 2 & \\ & \mu(h \to WW) \ {\rm in} \ {\rm ggF} \ {\rm at} \ 137 \ {\rm fb}^{-1} & 1 & \\ & \mu(h \to \mu\mu) \ {\rm at} \ 137 \ {\rm fb}^{-1} & 4 & \\ & {\rm Run-II} \ {\rm data} & \mu(h \to \tau\tau/WW) \ {\rm in} \ t\bar{t}h \ {\rm at} \ 137 \ {\rm fb}^{-1} & 3 & \\ & {\rm STXS} \ h \to WW \ {\rm at} \ 137 \ {\rm fb}^{-1} & 3 & \\ & {\rm STXS} \ h \to WW \ {\rm at} \ 137 \ {\rm fb}^{-1} & 11 & \\ & {\rm STXS} \ h \to \gamma\gamma \ {\rm at} \ 137 \ {\rm fb}^{-1} & 11 & \\ & {\rm STXS} \ h \to \gamma\gamma \ {\rm at} \ 137 \ {\rm fb}^{-1} & 11 & \\ & {\rm STXS} \ h \to \gamma\gamma \ {\rm at} \ 137 \ {\rm fb}^{-1} & 11 & \\ & {\rm STXS} \ h \to \gamma\gamma \ {\rm at} \ 137 \ {\rm fb}^{-1} & 18 & \\ \hline & {\rm ATLAS} \ WZ \ {\rm 13} \ {\rm TeV} \ m_T^{WZ} \ {\rm at} \ 36.1 \ {\rm fb}^{-1} & 6 & \\ \hline & {\rm bins} & \\ \hline & {\rm ATLAS} \ Zii \ {\rm 13} \ {\rm TeV} \ \Delta\phi_{Fi} \ {\rm at} \ 139 \ {\rm fb}^{-1} & 12 & \\ \hline & {\rm bins} & \\ \hline & {\rm at} \ 12 \ {\rm bins} & \\ \hline \end{array}$		STXS $h \to \gamma \gamma / ZZ / b\bar{b}$ at 139 fb ⁻¹	42	
$ \begin{array}{ c c c c c c c c } CMS \ combination \ at \ up \ to \ 137 \ fb^{-1} & 23 & \\ \mu(h \rightarrow b\bar{b}) \ in \ Vh \ at \ 35.9/41.5 \ fb^{-1} & 2 & \\ \mu(h \rightarrow WW) \ in \ ggF \ at \ 137 \ fb^{-1} & 1 & \\ \mu(h \rightarrow \mu\mu) \ at \ 137 \ fb^{-1} & 4 & \\ \mu(h \rightarrow \tau\tau/WW) \ in \ t\bar{t}h \ at \ 137 \ fb^{-1} & 3 & \\ \hline & & \\ STXS \ h \rightarrow WW \ at \ 137 \ fb^{-1} & 11 & \\ STXS \ h \rightarrow WW \ at \ 137 \ fb^{-1} & 11 & \\ STXS \ h \rightarrow \tau\tau \ at \ 137 \ fb^{-1} & 11 & \\ STXS \ h \rightarrow \gamma\gamma \ at \ 137 \ fb^{-1} & 11 & \\ STXS \ h \rightarrow \gamma\gamma \ at \ 137 \ fb^{-1} & 18 & \\ \hline & & \\ \hline & & \\ STXS \ h \rightarrow ZZ \ at \ 137 \ fb^{-1} & 18 & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\$		STXS $h \to WW$ in ggF, VBF at 139 fb ⁻¹	11	
$ \begin{array}{ c c c c c c c c c } \mu(h \to b\bar{b}) \mbox{ in } Vh \mbox{ at } 35.9/41.5 \mbox{ fb}^{-1} & 2 & \\ \mu(h \to WW) \mbox{ in } ggF \mbox{ at } 137 \mbox{ fb}^{-1} & 1 & \\ 13 \mbox{ TeV CMS} & \mu(h \to \mu\mu) \mbox{ at } 137 \mbox{ fb}^{-1} & 4 & \\ \mbox{ Run-II data} & \mu(h \to \tau\tau/WW) \mbox{ in } t\bar{t}h \mbox{ at } 137 \mbox{ fb}^{-1} & 3 & \\ \hline STXS h \to WW \mbox{ at } 137 \mbox{ fb}^{-1} \mbox{ in } Vh & 4 & \\ \mbox{ STXS } h \to WW \mbox{ at } 137 \mbox{ fb}^{-1} & 11 & \\ \mbox{ STXS } h \to \gamma\gamma \mbox{ at } 137 \mbox{ fb}^{-1} & 27 & \\ \mbox{ STXS } h \to ZZ \mbox{ at } 137 \mbox{ fb}^{-1} & 18 & \\ \hline \mbox{ ATLAS } WZ \mbox{ 13 TeV } m_T^{WZ} \mbox{ at } 36.1 \mbox{ fb}^{-1} & 12 \mbox{ bins } & \\ \hline \end{array} $		CMS combination at up to 137 fb^{-1}	23	\checkmark
$\mu(h \to WW)$ in ggF at 137 fb ⁻¹ 113 TeV CMS $\mu(h \to \mu\mu)$ at 137 fb ⁻¹ 4Run-II data $\mu(h \to \tau\tau/WW)$ in $t\bar{t}h$ at 137 fb ⁻¹ 3STXS $h \to WW$ at 137 fb ⁻¹ in Vh 4STXS $h \to WW$ at 137 fb ⁻¹ 11STXS $h \to \gamma\gamma$ at 137 fb ⁻¹ 11STXS $h \to \gamma\gamma$ at 137 fb ⁻¹ 27STXS $h \to ZZ$ at 137 fb ⁻¹ 18ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 binsATLAS Zij 13 TeV $\Delta\phi_{ij}$ at 139 fb ⁻¹ 12 bins		$\mu(h \to b\bar{b})$ in Vh at 35.9/41.5 fb ⁻¹	2	
13 TeV CMS $\mu(h \rightarrow \mu\mu)$ at 137 fb ⁻¹ 4Run-II data $\mu(h \rightarrow \tau\tau/WW)$ in $t\bar{t}h$ at 137 fb ⁻¹ 3STXS $h \rightarrow WW$ at 137 fb ⁻¹ in Vh 4STXS $h \rightarrow T\tau$ at 137 fb ⁻¹ 11STXS $h \rightarrow \gamma\gamma$ at 137 fb ⁻¹ 27STXS $h \rightarrow ZZ$ at 137 fb ⁻¹ 18ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 binsATLAS Zij 13 TeV $\Delta\phi_{dij}$ at 139 fb ⁻¹ 12 bins		$\mu(h \to WW)$ in ggF at 137 fb ⁻¹	1	
Run-II data $\mu(h \to \tau \tau/WW)$ in $t\bar{t}h$ at 137 fb ⁻¹ 3STXS $h \to WW$ at 137 fb ⁻¹ in Vh 4STXS $h \to \tau \tau$ at 137 fb ⁻¹ 11STXS $h \to \gamma \gamma$ at 137 fb ⁻¹ 27STXS $h \to ZZ$ at 137 fb ⁻¹ 18ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 binsATLAS Z ii 13 TeV $\Delta \phi_{ii}$ at 139 fb ⁻¹ 12 bins	$13 { m TeV} { m CMS}$	$\mu(h \to \mu\mu)$ at 137 fb ⁻¹	4	
STXS $h \to WW$ at 137 fb ⁻¹ in Vh 4STXS $h \to \tau\tau$ at 137 fb ⁻¹ 11STXS $h \to \gamma\gamma$ at 137 fb ⁻¹ 27STXS $h \to ZZ$ at 137 fb ⁻¹ 18ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 binsATLAS Zij 13 TeV $\Delta\phi_{ij}$ at 139 fb ⁻¹ 12 bins	Run-II data	$\mu(h \to \tau \tau/WW)$ in $t\bar{t}h$ at 137 fb ⁻¹	3	
STXS $h \to \tau\tau$ at 137 fb ⁻¹ 11STXS $h \to \gamma\gamma$ at 137 fb ⁻¹ 27STXS $h \to ZZ$ at 137 fb ⁻¹ 18ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 binsATLAS Zii 13 TeV $\Delta\phi_{ii}$ at 139 fb ⁻¹ 12 bins		STXS $h \to WW$ at 137 fb ⁻¹ in Vh	4	
STXS $h \to \gamma\gamma$ at 137 fb ⁻¹ 27STXS $h \to ZZ$ at 137 fb ⁻¹ 18ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 binsATLAS Zii 13 TeV $\Delta\phi_{ii}$ at 139 fb ⁻¹ 12 bins		STXS $h \to \tau \tau$ at 137 fb ⁻¹	11	
STXS $h \rightarrow ZZ$ at 137 fb ⁻¹ 18ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 binsATLAS Zii 13 TeV $\Delta \phi_{ii}$ at 139 fb ⁻¹ 12 bins		STXS $h \to \gamma \gamma$ at 137 fb ⁻¹	27	
ATLAS WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹ 6 binsATLAS Zij 13 TeV $\Delta \phi_{ij}$ at 139 fb ⁻¹ 12 bins		STXS $h \to ZZ$ at 137 fb ⁻¹	18	
ATLAS Zij 13 TeV $\Delta \phi_{ii}$ at 139 fb ⁻¹ 12 bins	ATLA	S WZ 13 TeV m_T^{WZ} at 36.1 fb ⁻¹	6 bins	\checkmark
	ATL	AS Zjj 13 TeV $\Delta \phi_{jj}$ at 139 fb ⁻¹	12 bins	\checkmark
ATLAS WW 13 TeV $p_T^{\ell 1}$ at 36.1 fb ⁻¹ 7 bins	ATL	AS <i>WW</i> 13 TeV $p_T^{\ell 1}$ at 36.1 fb ⁻¹	7 bins	\checkmark
Di-Higgs signal strengths ATLAS & CMS 13 TeV data $\mu_{HH}^{b\bar{b}b\bar{b}}, \mu_{HH}^{b\bar{b}\tau\bar{\tau}}, \mu_{HH}^{b\bar{b}\gamma\gamma} \qquad \qquad$	Di-Higgs signal	strengths ATLAS & CMS 13 TeV data $\mu_{{}_{HH}}^{b\bar{b}b\bar{b}}, \mu_{{}_{HH}}^{b\bar{b}\tau\bar{\tau}}, \mu_{{}_{HH}}^{b\bar{b}\gamma\gamma}$	6	

Fitting Terminology

For parameter estimation, Bayesian framework is followed:

 $p(\overrightarrow{C}|D) \propto p(D|\overrightarrow{C}) p(\overrightarrow{C}).$

Prior Probability distribution: Initial knowledge about the \overrightarrow{C} . Uninformative priors are used for WCs taken as to be uniform distributions with large range

• for WCs {-10,10}.

Likelihood: Information about the theory and data. For Gaussian data:

$$Log \ Likelihood = -\frac{1}{2} \sum_{i} (O_{exp} - O_{th}(\overrightarrow{C}))_i \ V_{ij}^{-1} \ (O_{exp} - O_{th}(\overrightarrow{C}))_j.$$

Posterior: Probability distribution of parameters \vec{C} given the data D. Unnormalised posterior is sampled using MCMC using the Mathematica package OptEx. OptEx, S K Patra, under development https://doi.org/10.5281/zenodo.3404311

Using this framework, fit is performed for 23 WCs treated as free and independent parameters.

Individual & Global fit results

Anisha, Bakshi, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky 2111.05876

Model dependent analysis using SMEFT

Dawson, Homiller & Lane 2007.01296 Ellis, Madigan, Mimasu, Murphy, Sanz & You <u>2012.02779</u> Brivio, Bruggiser, Geoffray, Killian, Kramer 2108.01094 Bakshi, Chakrabortty, (Englert), Spannowsky, (Stylianou) (<u>2009.13394</u>), <u>2012.03839</u> Anisha, Bakshi, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky 2111.05876

Top-Down Approach

Bottom-Up Approach

Connecting Bottom-up approach with Top-down approach

Anisha, Bakshi, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky, 2111.05876

SM extended with Extra Scalar Doublet $\mathcal{H}_2(1,2,-1/2)$

$$\begin{split} \mathscr{L}_{\mathscr{H}_{2}} &\supset \frac{1}{2} \left| \mathscr{D}_{\mu} \mathscr{H}_{2} \right|^{2} - m_{\mathscr{H}_{2}}^{2} \left| \mathscr{H}_{2} \right|^{2} - \frac{\lambda_{\mathscr{H}_{2}}}{4} \left| \mathscr{H}_{2} \right|^{4} - (\eta_{H} \left| \widetilde{H} \right|^{2} + \eta_{\mathscr{H}_{2}} \left| \mathscr{H}_{2} \right|^{2}) (\widetilde{H}^{\dagger} \mathscr{H}_{2} + \mathscr{H}_{2}^{\dagger} \widetilde{H}) \\ &- \lambda_{\mathscr{H}_{2},1} \left| \widetilde{H} \right|^{2} \left| \mathscr{H}_{2} \right|^{2} - \lambda_{\mathscr{H}_{2},2} \left| \widetilde{H}^{\dagger} \mathscr{H}_{2} \right|^{2} - \lambda_{\mathscr{H}_{2},3} \left[(\widetilde{H}^{\dagger} \mathscr{H}_{2})^{2} + (\mathscr{H}_{2}^{\dagger} \widetilde{H})^{2} \right] \\ &- \left\{ Y_{\mathscr{H}_{2}}^{(e)} \overline{l}_{L} \widetilde{\mathscr{H}}_{2} e_{R} + Y_{\mathscr{H}_{2}}^{(u)} \overline{q}_{L} \mathscr{H}_{2} u_{R} + Y_{\mathscr{H}_{2}}^{(d)} \overline{q}_{L} \widetilde{\mathscr{H}}_{2} d_{R} + h.c. \right\}. \end{split}$$

- $m_{\mathcal{H}_{\gamma}}$ is the mass of the heavy scalar doublet taken to be cut-off Λ .
- After integrating out this doublet at one loop using CoDEx, the WCs are generated in terms of model parameters.
- For simplification, assumed Z_2 symmetry i.e $\mathcal{H}_2 \rightarrow \mathcal{H}_2$ and the number of parameters are reduced.

https://github.com/effExTeam/Precision-Observables-and-Higgs-Signals-Effective-passageto-select-BSM

SMEFT Matching results

Dim 6 Ong

 $Q_{qd}^{(1)}$

 $Q_{qu}^{(1)}$

 $Q_{lq}^{(1)}$

Wilcon coefficients

 $17280\pi^2 m_{1}^2$

 $\overline{8640\pi^2 m_{\mathcal{H}}^2}$

 $\overline{11520\pi^2} m_{\mathcal{H}}^2$

Dim-6 Ops.	Wilson coefficients			$Q_{ud}^{(1)}$	$rac{g_{Y}^{4}}{4320\pi^{2}m_{\mathcal{H}_{2}}^{2}}$
Q_{dH}	$\frac{\lambda_{\mathcal{H}_{2},2}^{2}Y_{d}^{\mathrm{SM}}}{192\pi^{2}m_{\mathcal{H}_{2}}^{2}} + \frac{\lambda_{\mathcal{H}_{2},3}^{2}Y_{d}^{\mathrm{SM}}}{48\pi^{2}m_{\mathcal{H}_{2}}^{2}}$	Dim-6 Ops.	Wilson coefficients	$Q_{lq}^{(3)}$	$-\frac{g_W^4}{3840\pi^2 m^2}$
Q_{eH}	$\frac{\lambda_{\mathcal{H}_{2},2}^{2}Y_{e}^{\mathrm{SM}}}{192\pi^{2}m_{\mathcal{H}_{2}}^{2}} + \frac{\lambda_{\mathcal{H}_{2},3}^{2}Y_{e}^{\mathrm{SM}}}{48\pi^{2}m_{\mathcal{H}_{2}}^{2}}$	$Q_{Hl}^{(1)}$	$rac{g_Y^4}{3840\pi^2 m_{{\cal H}_2}^2}$	$Q_{qq}^{(3)}$	$-\frac{g_W^4}{7680\pi^2 m^2}$
Q_{uH}	$\frac{\lambda_{\mathcal{H}_{2},2}^{2}Y_{u}^{\mathrm{SM}}}{{}^{192\pi^{2}}m_{\mathcal{H}_{2}}^{2}} + \frac{\lambda_{\mathcal{H}_{2},3}^{2}Y_{u}^{\mathrm{SM}}}{{}^{48\pi^{2}}m_{\mathcal{H}_{2}}^{2}}$	$Q_{Hq}^{(1)}$	$-\frac{g_Y^4}{11520\pi^2 m_{\mathcal{H}_2}^2}$	Q_{dd}	$-\frac{g_Y^4}{17280-2m^2}$
Q_H	$-\frac{\lambda_{\mathcal{H}_{2},1}^{3}}{48\pi^{2}m_{\mathcal{H}_{2}}^{2}}+\frac{\lambda_{H}^{\mathrm{SM}}\lambda_{\mathcal{H}_{2},2}^{2}}{96\pi^{2}m_{\mathcal{H}_{2}}^{2}}-\frac{\lambda_{\mathcal{H}_{2},1}^{2}\lambda_{\mathcal{H}_{2},2}}{32\pi^{2}m_{\mathcal{H}_{2}}^{2}}$	$Q_{ m Hd}$	$rac{g_Y^4}{5760\pi^2 m_{\mathcal{H}_2}^2}$	Q _{ed}	$-\frac{g_Y^4}{2880-2m^2}$
	$-\frac{\lambda_{\mathcal{H}_{2},1}\lambda_{\mathcal{H}_{2},2}^{2}}{32\pi^{2}m_{\mathcal{H}_{2}}^{2}}\frac{\lambda_{H}^{\mathrm{SM}}\lambda_{\mathcal{H}_{2},3}^{2}}{24\pi^{2}m_{\mathcal{H}_{2}}^{2}}-\frac{\lambda_{\mathcal{H}_{2},2}^{3}}{96\pi^{2}m_{\mathcal{H}_{2}}^{2}}$	Q_{He}	$rac{g_{Y}^{4}}{1920\pi^{2}m_{\mathcal{H}_{2}}^{2}}$	Qee	$\frac{2880\pi^2 m_{\mathcal{H}_2}^2}{\frac{g_Y^4}{1000^2 n_{\mathcal{H}_2}^2}}$
	$-\frac{\lambda_{\mathcal{H}_2,1}\lambda_{\mathcal{H}_2,3}^2}{8\pi^2 m_{\mathcal{H}_2}^2} - \frac{\lambda_{\mathcal{H}_2,2}\lambda_{\mathcal{H}_2,3}^2}{8\pi^2 m_{\mathcal{H}_2}^2}$	Q_{Hu}	$-rac{g_Y^4}{2880\pi^2 m_{{\cal H}_2}^2}$	Qau	$\frac{1920\pi^2 m_{\mathcal{H}_2}^2}{g_Y^4}$
$Q_{H\square}$	$-\frac{g_W^4}{7680\pi^2 m_{\mathcal{H}_2}^2} - \frac{\lambda_{\mathcal{H}_2,1}^2}{96\pi^2 m_{\mathcal{H}_2}^2}$	$Q_{Hl}^{(3)}$	$-rac{g_W^4}{1920\pi^2 m_{\mathcal{H}_2}^2}$		
	$-\frac{\lambda_{\mathcal{H}_2,1}\lambda_{\mathcal{H}_2,2}}{96\pi^2m_{\mathcal{H}_2}^2} + \frac{\lambda_{\mathcal{H}_2,3}^2}{48\pi^2m_{\mathcal{H}_2}^2}$	$Q_{Hq}^{(3)}$	$-\frac{g_W^4}{1920\pi^2 m_{\mathcal{H}_2}^2}$		$\frac{4320\pi^2 m_{\mathcal{H}_2}^2}{g_Y^4}$
Q_{HD}	$-\frac{g_Y^4}{1920\pi^2 m_{\mathcal{H}_2}^2} - \frac{\lambda_{\mathcal{H}_2,2}^2}{96\pi^2 m_{\mathcal{H}_2}^2} + \frac{\lambda_{\mathcal{H}_2,3}^2}{24\pi^2 m_{\mathcal{H}_2}^2}$	Q_W	$\frac{g_W^3}{5760\pi^2 m_{2_1}^2}$		$\frac{\overline{2880\pi^2 m_{\mathcal{H}_2}^2}}{a_{\mathcal{H}_2}^4}$
Q_{HB}	$\frac{g_Y^2 \lambda_{\mathcal{H}_2,1}}{384\pi^2 m_{2_1}^2} + \frac{g_Y^2 \lambda_{\mathcal{H}_2,2}}{768\pi^2 m_{2_1}^2}$	Q_{ll}	$\frac{\pi_2}{-\frac{g_W^4}{7680\pi^2 m_{\pi^2}^2} - \frac{g_Y^4}{7680\pi^2 m_{\pi^2}^2}}$	Q_{qe}	$\frac{3\gamma}{5760\pi^2 m_{\mathcal{H}_2}^2}$
Q_{HW}	$\frac{\pi_2}{\frac{g_W^2 \lambda_{\mathcal{H}_2,1}}{284-2m^2} + \frac{g_W^2 \lambda_{\mathcal{H}_2,2}}{768-2m^2}}$		\mathcal{H}_2 \mathcal{H}_2	Q_{ld}	$-\frac{g_Y}{5760\pi^2 m_{\mathcal{H}_2}^2}$
0	$\frac{384\pi^{-}m\bar{\mathcal{H}}_{2}}{g_{W}g_{Y}\lambda_{\mathcal{H}_{2},2}}$			$Q_{qq}^{(1)}$	$-\frac{g_Y^4}{69120\pi^2 m_{\mathcal{H}_2}^2}$
𝘪 H W B	$384\pi^2 m_{\mathcal{H}_2}^2$			Q_{le}	$-\frac{g_Y^4}{1920\pi^2 m_{242}^2}$

18 operators contribute in model dependent analysis

CoDEx SMEFT Matching Result

Bakshi, Chakrabortty & Patra 1808.04403

Constraints on the model parameters - 2D posteriors

- 3 model parameters
- Uniform distributions of range {-50,50}.
- Effects on different datasets.

Anisha, Bakshi, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky, 2111.05876

BSM dependent WC space

Using the samples of points generated for $\lambda_{\mathcal{H}_2,1}$, $\lambda_{\mathcal{H}_2,2}$, $\lambda_{\mathcal{H}_2,3}$, the distributions for the 9 WCs are obtained. These correspond to the bounds from the model information.

 C_{HW}

BSM dependent WC space

Using the samples of points generated for $\lambda_{\mathcal{H}_2,1}$, $\lambda_{\mathcal{H}_2,2}$, $\lambda_{\mathcal{H}_2,3}$, the distributions for the WCs are obtained. These correspond to the bounds from the model information.

22

-2

-1

 $\mathcal{C}_{H \, \square}$

0

2

-3

Effect of RGE on model dependent analysis

(Alonso), Jenkins, Manohar & Trott <u>1308.2627,1310.4838</u>, (<u>1312.2014</u>) **37 SMEFT operators 51 SMEFT operators**

- With assumptions of Z_2 symmetry, 18 operators contribute in 3 model parameter constraints.
- Modification in matching expressions lead to relaxed BSM parameter bounds.
- With increase in $m_{\mathcal{H}_2}$, the model parameter spaces are becoming more relaxed.

Model dependent WCs spaces

• Similar behaviour is observed for the model generated WCs.

• After including RGE of WCs, parameter spaces of WCs not constrained by data are obtained using BSM parameter spaces.

Conclusions

- Constraints on WCs obtained using the *bottom up* approach of SMEFT.
- Connecting *bottom up* approach with *top down* approach.
 - Bounds on BSM parameters.
 - Model dependent WCs Parameter spaces are more constrained as compared to those obtained when WCs are treated free.

Future Prospects

- Aim to include top sector data and flavour observables in the global fit.
- Studying the effects of dim-6 squared and dim-8 contributions.
- Include observables which can affect four-fermi operators.
- Build a framework to compare BSM theories using the matching results.

Thank you for the attention !

Back up

Constraining effects of different datasets

Anisha, Bakshi, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky 2111.05876

28

Complete 1-loop Wilson coefficients within seconds !

Manually matching BSMs to SMEFT is involved.

Package for automization is much needed.

https://effexteam.github.io/CoDEx/

CoDEx: Extra Scalar Doublet

+yH2u ((qdubb[1, 1][[1]] *φ[[1]] + qdubb[1, 1][[2]] *φ[[2]]).uR[1, 1]

+ uRb[1, 1].(hermitianConjugate[φ[[1]]] * qdub[1, 1][[1]] + hermitianConjugate[φ[[2]]] * qdub[1, 1][[2]]))
+yH2d((qdubb[1, 1][[1]] * φt[[1]] + qdubb[1, 1][[2]] * φt[[2]]).dR[1, 1]
dDb[1, 1]([1]] * φt[[1]] + qdubb[1, 1][[2]] * φt[[2]]).dR[1, 1]

+ dRb[1, 1]. (hermitianConjugate [φ t[[1]]] * qdub[1, 1][[1]] + hermitianConjugate [φ t[[2]]] * qdub[1, 1][[2]]))

Tree-level Wilson coefficients

In[4]: codexOutput[LH2, list, model -> "2HDM", outRange -> "Tree",
operBasis -> "Warsaw"]

Qн	$(H^{\dagger}H)^3$	$\frac{\eta H^2}{mH2^2}$
$Q_{ m eH}$	$(H^{\dagger}H)(\bar{l} \in H)$ +h.c.	$-\frac{\eta H \text{ yH2e}}{m H2^2}$
Q_{uH}	$(H^{\dagger}H)(\overline{q} \text{ u} \tilde{H})+\text{h.c.}$	<u>ηН уН2u</u> mH2 ²
$Q_{ m dH}$	$(H^{\dagger}H)(\overline{q} d H)+h.c.$	$-\frac{\eta H \text{ yH2d}}{\text{mH2}^2}$
Q_{le}	$(\overline{l} \gamma_{\mu} \mathbf{l})(\overline{e} \gamma_{\mu} \mathbf{e})$	$-\frac{\text{yH2e}^2}{4 \text{ mH2}^2}$
$Q_{qu}^{(1)}$	$(\overline{q} \gamma^{\mu} q) (\overline{u} \gamma_{\mu} u)$	$-\frac{\text{yH2u}^2}{4 \text{ mH2}^2}$
$Q_{qd}^{(1)}$	$(\overline{q} \gamma_{\mu} q)(\overline{d} \gamma_{\mu} d)$	$-\frac{\text{yH2d}^2}{4 \text{ mH2}^2}$
Q_{ledq}	$(\overline{l}^{j} e)(\overline{d} q_{j})+h.c.$	$\frac{\text{yH2d yH2e}}{2 \text{ mH2}^2}$
$Q_{quqd}^{(1)}$	$(\overline{q}^{j} u)\epsilon_{jk}(\overline{q}^{k} d)+h.c.$	$-\frac{\text{yH2d yH2u}}{2 \text{ mH2}^2}$
$Q_{lequ}^{(1)}$	$(\overline{I}^{j} e)\epsilon_{jk}(\overline{q}^{k} u)+h.c.$	yH2e yH2u 2 mH2 ²

Matching scale = mass of heavy field = mH₂


```
In[5]: initializeLoop[ "2HDM" , list]
```

In[6]: codexOutput[LH2, list, model -> "2HDM", outRange -> "Loop", operBasis ->
"Warsaw"]

Out[6]:

Matching scale = heavy field mass

*1-loop processes involving only heavy propagators in the loop.

RGFlow of the Wilson coefficients

In[7]: RGFlow[Wilson coefficients, mH2, µ]

Out[7]:

SMEFT Matching results

Dim-6 Ops.	Wilson coefficients
Dim-6 Ops. $Q_{\rm dH}$	$ \begin{array}{c} \text{Wilson coefficients} \\ \hline \\ \frac{\eta_{H}^{2}Y_{d}^{\text{SM}}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} - \frac{3\eta_{H}\eta_{\mathcal{H}_{2}}Y_{d}^{\text{SM}}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} - \frac{\eta_{H}Y_{\mathcal{H}_{2}}^{(d)}}{m_{\mathcal{H}_{2}}^{2}} \\ - \frac{3\eta_{H}\lambda_{\mathcal{H}_{2}}Y_{\mathcal{H}_{2}}^{(d)}}{32\pi^{2}m_{\mathcal{H}_{2}}^{2}} + \frac{3\eta_{H}\lambda_{\mathcal{H}_{2},1}Y_{\mathcal{H}_{2}}^{(d)}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} - \frac{3\eta_{\mathcal{H}_{2}}\lambda_{\mathcal{H}_{2},1}Y_{\mathcal{H}_{2}}^{(d)}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} \\ \frac{\eta_{H}\lambda_{\mathcal{H}_{2},2}Y_{\mathcal{H}_{2}}^{(d)}}{4\pi^{2}m_{\mathcal{H}_{2}}^{2}} - \frac{3\eta_{\mathcal{H}_{2}}\lambda_{\mathcal{H}_{2},2}Y_{\mathcal{H}_{2}}^{(d)}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} + \frac{\lambda_{\mathcal{H}_{2},2}^{2}Y_{d}^{\text{SM}}}{192\pi^{2}m_{\mathcal{H}_{2}}^{2}} \\ \frac{5\eta_{H}\lambda_{\mathcal{H}_{2},3}Y_{\mathcal{H}_{2}}^{(d)}}{8\pi^{2}m_{\mathcal{H}_{2}}^{2}} + \frac{\lambda_{\mathcal{H}_{2},3}^{2}Y_{d}^{\text{SM}}}{48\pi^{2}m_{\mathcal{H}_{2}}^{2}} \\ \frac{\eta_{H}^{2}Y_{e}^{\text{SM}}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} - \frac{3\eta_{H}\eta_{\mathcal{H}_{2}}Y_{e}^{\text{SM}}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} - \frac{\eta_{H}Y_{\mathcal{H}_{2}}^{(e)}}{m_{\mathcal{H}_{2}}^{2}} \\ \frac{3\eta_{H}\lambda_{\mathcal{H}_{2}}Y_{\mathcal{H}_{2}}^{(e)}}{3\eta_{H}\lambda_{\mathcal{H}_{2},1}Y_{\mathcal{H}_{2}}^{(e)}} - 3\eta_{\mathcal{H}_{2}}\lambda_{\mathcal{H}_{2},1}Y_{\mathcal{H}_{2}}^{(e)} \end{array}$
	$\frac{\frac{32\pi^{2}m_{\mathcal{H}_{2}}^{2}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} - \frac{16\pi^{2}m_{\mathcal{H}_{2}}^{2}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} - \frac{3\eta_{\mathcal{H}_{2}}\lambda_{\mathcal{H}_{2},2}Y_{\mathcal{H}_{2}}^{(e)}}{16\pi^{2}m_{\mathcal{H}_{2}}^{2}} + \frac{\lambda_{\mathcal{H}_{2},2}^{2}Y_{e}^{\mathrm{SM}}}{192\pi^{2}m_{\mathcal{H}_{2}}^{2}}}{\frac{5\eta_{\mathcal{H}}\lambda_{\mathcal{H}_{2},3}Y_{\mathcal{H}_{2}}^{(e)}}{8\pi^{2}m_{\mathcal{H}_{2}}^{2}}} + \frac{\lambda_{\mathcal{H}_{2},3}^{2}Y_{e}^{\mathrm{SM}}}{48\pi^{2}m_{\mathcal{H}_{2}}^{2}}$
$Q_{ m uH}$	$\frac{\eta_{H}^{2} Y_{u}^{\mathrm{SM}}}{16\pi^{2} m_{\mathcal{H}_{2}}^{2}} + \frac{3\eta_{H}\lambda_{\mathcal{H}_{2}} Y_{\mathcal{H}_{2}}^{(u)}}{32\pi^{2} m_{\mathcal{H}_{2}}^{2}} + \frac{\eta_{H} Y_{\mathcal{H}_{2}}^{(u)}}{m_{\mathcal{H}_{2}}^{2}} \\ -\frac{3\eta_{H}\eta_{\mathcal{H}_{2}} Y_{u}^{\mathrm{SM}}}{16\pi^{2} m_{\mathcal{H}_{2}}^{2}} - \frac{3\eta_{H}\lambda_{\mathcal{H}_{2},1} Y_{\mathcal{H}_{2}}^{(u)}}{16\pi^{2} m_{\mathcal{H}_{2}}^{2}} + \frac{3\eta_{\mathcal{H}_{2}}\lambda_{\mathcal{H}_{2},1} Y_{\mathcal{H}_{2}}^{(u)}}{16\pi^{2} m_{\mathcal{H}_{2}}^{2}} \\ -\frac{\eta_{H}\lambda_{\mathcal{H}_{2},2} Y_{\mathcal{H}_{2}}^{(u)}}{4\pi^{2} m_{\mathcal{H}_{2}}^{2}} + \frac{3\eta_{\mathcal{H}_{2}}\lambda_{\mathcal{H}_{2},2} Y_{\mathcal{H}_{2}}^{(u)}}{16\pi^{2} m_{\mathcal{H}_{2}}^{2}} + \frac{\lambda_{\mathcal{H}_{2},2}^{2} Y_{u}^{\mathrm{SM}}}{192\pi^{2} m_{\mathcal{H}_{2}}^{2}} \\ \frac{\lambda_{\mathcal{H}_{2},3}^{2} Y_{u}^{\mathrm{SM}}}{48\pi^{2} m_{\mathcal{H}_{2}}^{2}} - \frac{5\eta_{H}\lambda_{\mathcal{H}_{2},3} Y_{\mathcal{H}_{2}}^{(u)}}{8\pi^{2} m_{\mathcal{H}_{2}}^{2}} \\ \end{array}$
Q_H	$\frac{\frac{3\eta_{H}^{2}\lambda_{H_{2}}}{32\pi^{2}m_{H_{2}}^{2}} + \frac{17\eta_{H}^{2}\lambda_{H}^{SM}}{16\pi^{2}m_{H_{2}}^{2}} + \frac{\eta_{H}^{2}}{m_{H_{2}}^{2}}}{\frac{-\frac{3\eta_{H}^{2}\lambda_{H_{2},1}}{4\pi^{2}m_{H_{2}}^{2}} - \frac{3\eta_{H}\eta_{H_{2}}\lambda_{H}^{SM}}{8\pi^{2}m_{H_{2}}^{2}} + \frac{3\eta_{H}\eta_{H_{2}}\lambda_{H_{2},1}}{8\pi^{2}m_{H_{2}}^{2}}}{-\frac{13\eta_{H}^{2}\lambda_{H_{2},2}}{16\pi^{2}m_{H_{2}}^{2}} + \frac{3\eta_{H}\eta_{H_{2}}\lambda_{H_{2},2}}{8\pi^{2}m_{H_{2}}^{2}} - \frac{\lambda_{H_{2},1}^{3}\lambda_{H_{2},1}}{48\pi^{2}m_{H_{2}}^{2}}}{\frac{\lambda_{H}^{SM}\lambda_{H_{2},2}^{2}}{96\pi^{2}m_{H_{2}}^{2}} - \frac{\lambda_{H_{2},1}^{2}\lambda_{H_{2},2}}{32\pi^{2}m_{H_{2}}^{2}} - \frac{\lambda_{H_{2},1}\lambda_{H_{2},2}^{2}}{32\pi^{2}m_{H_{2}}^{2}} - \frac{\lambda_{H_{2},1}\lambda_{H_{2},2}^{2}}{32\pi^{2}m_{H_{2}}^{2}}}{-\frac{7\eta_{H}^{2}\lambda_{H_{2},3}}{4\pi^{2}m_{H_{2}}^{2}} + \frac{\lambda_{H}^{SM}\lambda_{H_{2},3}^{2}}{24\pi^{2}m_{H_{2}}^{2}} - \frac{\lambda_{H_{2},1}\lambda_{H_{2},2}^{2}}{96\pi^{2}m_{H_{2}}^{2}}}{-\frac{\lambda_{H_{2},1}\lambda_{H_{2},3}^{2}}{4\pi^{2}m_{H_{2}}^{2}} - \frac{\lambda_{H_{2},2}\lambda_{H_{2},3}^{2}}{32\pi^{2}m_{H_{2}}^{2}}}$
$Q_{H\square}$	$-\frac{g_W^4}{7680\pi^2 m_{\mathcal{H}_2}^2} - \frac{3\eta_H^2}{32\pi^2 m_{\mathcal{H}_2}^2} - \frac{\lambda_{\mathcal{H}_2,1}^2}{96\pi^2 m_{\mathcal{H}_2}^2} - \frac{\lambda_{\mathcal{H}_2,1}^2}{96\pi^2 m_{\mathcal{H}_2}^2} - \frac{\lambda_{\mathcal{H}_2,1}^2}{96\pi^2 m_{\mathcal{H}_2}^2} + \frac{\lambda_{\mathcal{H}_2,2}^2}{384\pi^2 m_{\mathcal{H}_2}^2} + \frac{\lambda_{\mathcal{H}_2,3}^2}{96\pi^2 m_{\mathcal{H}_2}^2}$
$Q_{ m HD}$	$-\frac{g_Y^4}{{}^{1920\pi^2}m_{\mathcal{H}_2}^2}-\frac{\lambda_{\mathcal{H}_2,2}^2}{{}^{96\pi^2}m_{\mathcal{H}_2}^2}+\frac{\lambda_{\mathcal{H}_2,3}^2}{{}^{24\pi^2}m_{\mathcal{H}_2}^2}$
Q_{HB}	$\frac{\frac{g_Y^2 \lambda_{\mathcal{H}_2,1}}{384\pi^2 m_{\mathcal{H}_2}^2} + \frac{g_Y^2 \lambda_{\mathcal{H}_2,2}}{768\pi^2 m_{\mathcal{H}_2}^2}}{\frac{g_Y^2 \lambda_{\mathcal{H}_2,2}}{768\pi^2 m_{\mathcal{H}_2}^2}}$
$Q_{ m HW}$	$\frac{g_W^2 \lambda_{\mathcal{H}_2,1}}{_{384\pi^2 m_{\mathcal{H}_2}^2}} + \frac{g_W^2 \lambda_{\mathcal{H}_2,2}}{_{768\pi^2 m_{\mathcal{H}_2}^2}}$
$Q_{\rm HWB}$	$\frac{\frac{g_W g_Y \lambda_{\mathcal{H}_2,2}}{384\pi^2 m_{\mathcal{H}_2}^2}}{\frac{g_W g_Y \lambda_{\mathcal{H}_2,2}}{384\pi^2 m_{\mathcal{H}_2}^2}}$

Dim-6 Ops.	Wilson coefficients
$Q_{Hl}^{(1)}$	$rac{g_Y^4}{3840\pi^2 m_{{\cal H}_2}^2}$
$Q_{Hq}^{(1)}$	$-\frac{g_Y^4}{11520\pi^2 m_{\mathcal{H}_2}^2}$
$Q_{ m Hd}$	$\frac{g_Y^4}{5760\pi^2 m_{\mathcal{H}_2}^2}$
Q_{He}	$rac{g_Y^4}{1920\pi^2 m_{{\cal H}_2}^2}$
Q_{Hu}	$-rac{g_Y^4}{2880\pi^2 m_{{\cal H}_2}^2}$
$Q_{Hl}^{\left(3 ight) }$	$-rac{g_W^4}{1920\pi^2 m_{{\cal H}_2}^2}$
$Q_{Hq}^{(3)}$	$-rac{g_W^4}{1920 \pi^2 m_{{\cal H}_2}^2}$
Q_W	$rac{g_W^3}{5760\pi^2 m_{{\cal H}_2}^2}$
Q_{ll}	$-\frac{g_W^4}{7680\pi^2 m_{\mathcal{H}_2}^2} - \frac{g_Y^4}{7680\pi^2 m_{\mathcal{H}_2}^2}$

CoDEx SMEFT Matching Result

Bakshi, Chakrabortty & Patra <u>1808.04403</u>

Dim-6 Ops.	Wilson coefficients			
$Q_{ m ud}{}^{(1)}$	$rac{g_Y^4}{4320\pi^2 m_{{\cal H}_2}^2}$			
$Q_{ m lq}{}^{(3)}$	$-rac{g_W^4}{3840\pi^2 m_{{\cal H}_2}^2}$			
$Q_{ m qq}{}^{(3)}$	(3) $-\frac{g_W^4}{7680\pi^2 m_{\mathcal{H}_2}^2}$			
$Q_{ m dd}$	$-rac{g_Y^4}{17280\pi^2 m_{{\cal H}_2}^2}$			
$Q_{ m ed}$	$-rac{g_Y^4}{2880\pi^2 m_{\mathcal{H}_2}^2}$			
$Q_{ m ee}$	$-\frac{g_{Y}^{4}}{1920\pi^{2}m_{\mathcal{H}_{2}}^{2}}$			
$Q_{ m eu}$	$\frac{g_{Y}^{4}}{1440\pi^{2}m_{\mathcal{H}_{2}}^{2}}$			
$Q_{ m uu}$	$-rac{g_Y^4}{4320\pi^2 m_{{\cal H}_2}^2}$			
$Q_{ m lu}$	$\frac{g_{Y}^{4}}{2880\pi^{2}m_{\mathcal{H}_{2}}^{2}}$			
$Q_{ m qe}$	$\frac{g_{Y}^{4}}{5760\pi^{2}m_{\mathcal{H}_{2}}^{2}}$			
$Q_{ m ld}$	$-rac{g_Y^4}{5760\pi^2 m_{\mathcal{H}_2}^2}$			
$Q_{ m qq}^{(1)}$	$-rac{g_Y^4}{69120\pi^2 m_{{\cal H}_2}^2}$			
$Q_{ m le}$	$-\frac{g_Y^4}{1920\pi^2 m_{\mathcal{H}_2}^2} - \frac{3\lambda_{\mathcal{H}_2} Y_{\mathcal{H}_2}^{(e)2}}{128\pi^2 m_{\mathcal{H}_2}^2} - \frac{Y_{\mathcal{H}_2}^{(e)2}}{4m_{\mathcal{H}_2}^2}$			
$Q_{ m qd}{}^{(1)}$	$\frac{g_Y^4}{17280\pi^2 m_{\mathcal{H}_2}^2} - \frac{3\lambda_{\mathcal{H}_2} Y_{\mathcal{H}_2}^{(d)2}}{128\pi^2 m_{\mathcal{H}_2}^2} - \frac{Y_{\mathcal{H}_2}^{(d)2}}{4m_{\mathcal{H}_2}^2}$			
$Q_{ m qu}{}^{(1)}$	$-\frac{g_Y^4}{8640\pi^2 m_{\mathcal{H}_2}^2} - \frac{3\lambda_{\mathcal{H}_2} Y_{\mathcal{H}_2}^{(u)2}}{128\pi^2 m_{\mathcal{H}_2}^2} - \frac{Y_{\mathcal{H}_2}^{(u)2}}{4m_{\mathcal{H}_2}^2}$			
$Q_{ m quqd}^{(1)}$	$-\frac{3\lambda_{\mathcal{H}_2}Y_{\mathcal{H}_2}^{(d)}Y_{\mathcal{H}_2}^{(u)}}{64\pi^2 m_{\mathcal{H}_2}^2} - \frac{Y_{\mathcal{H}_2}^{(d)}Y_{\mathcal{H}_2}^{(u)}}{2m_{\mathcal{H}_2}^2}$			
$Q_{ m lequ}{}^{(1)}$	$\frac{3\lambda_{\mathcal{H}_2}Y_{\mathcal{H}_2}^{(e)}Y_{\mathcal{H}_2}^{(u)}}{64\pi^2 m_{\mathcal{H}_2}^2} + \frac{Y_{\mathcal{H}_2}^{(e)}Y_{\mathcal{H}_2}^{(u)}}{2m_{\mathcal{H}_2}^2}$			
$Q_{ m lq}^{(1)}$	$\frac{g_{Y}^{4}}{11520\pi^{2}m_{\mathcal{H}_{2}}^{2}}$			
$Q_{ m ledq}$	$\frac{3\lambda_{\mathcal{H}_2}Y_{\mathcal{H}_2}^{(d)}Y_{\mathcal{H}_2}^{(e)}}{64\pi^2 m_{\mathcal{H}_2}^2} + \frac{Y_{\mathcal{H}_2}^{(d)}Y_{\mathcal{H}_2}^{(e)}}{2m_{\mathcal{H}_2}^2}$			

BSM scenarios considered

RSM field	Spin	SM quantum numbers			Mass	
	Spin	$SU(3)_{C}$	$SU(2)_L$	$U(1)_{Y}$	1111111111	
S	0	1	1	0	$m_{\mathcal{S}}$	
	0	1	3	0	m_{Δ}	
\mathcal{S}_1	0	1	1	1	$m_{\mathcal{S}_1}$	
\mathcal{S}_2	0	1	1	2	$m_{\mathcal{S}_2}$	
Δ_1	0	1	3	1	m_{Δ_1}	
\mathcal{H}_2	0	1	2	$-\frac{1}{2}$	$m_{\mathcal{H}_2}$	
Σ	0	1	4	$\frac{1}{2}$	m_{Σ}	
φ_1	0	3	1	$-\frac{1}{3}$	m_{φ_1}	
φ_2	0	3	1	$-\frac{4}{3}$	m_{arphi_2}	
Θ_1	0	3	2	$\frac{1}{6}$	m_{Θ_1}	
Θ_2	0	3	2	$\frac{7}{6}$	m_{Θ_2}	
Ω	0	3	3	$-\frac{1}{3}$	m_{Ω}	
χ_1	0	6	3	$\frac{1}{3}$	m_{χ_1}	
χ_2	0	6	1	$\frac{4}{3}$	m_{χ_2}	
χ_3	0	6	1	$-\frac{2}{3}$	m_{χ_3}	
χ_4	0	6	1	$\frac{1}{3}$	m_{χ_4}	

CoDEx- Bakshi, Chakrabortty & Patra <u>1808.04403</u>

https://github.com/effExTeam/Precision-Observables-and-Higgs-Signals-Effective-passageto-select-BSM

Fit results of Model independent analysis

WCs	95% CI Individual limits	95% CI Global limits	WCs	Correlations
\mathcal{C}_{HWB}	[-0.0035, 0.0028]	[-0.19, 0.15]		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
\mathcal{C}_{HD}	[-0.022, 0.0042]	[-0.40, 0.39]	\mathcal{C}_{HWB}	
\mathcal{C}_{ll}	[-0.006, 0.016]	[-0.10, 0.00]	C _{HD}	-0.98 1 -0.03 0.06 1
$\mathcal{C}_{Hl}^{(1)}$	[-0.005, 0.012]	[-0.08, 0.12]	$\mathcal{C}_{Hl}^{(1)}$	0.96 -0.98 -0.22 1
$\mathcal{C}_{Hl}^{(3)}$	[-0.010, 0.003]	[-0.054, 0.063]	$\mathcal{C}_{Hl}^{(3)}$	0.09 -0.24 0.31 0.17 1
\mathcal{C}_{He}	[-0.013, 0.008]	[-0.20, 0.19]	\mathcal{C}_{He}	$0.98 -1.00 -0.07 \ 0.98 \ 0.24 \ 1$
$\mathcal{C}_{Ha}^{(1)}$	[-0.023, 0.047]	[-0.057, 0.096]	$\mathcal{C}_{Hq}^{(1)}$	-0.41 0.34 -0.13 -0.31 0.20 -0.35 1
$\mathcal{C}_{Hq}^{(3)}$	[-0.008, 0.016]	[-0.033, 0.063]	$\mathcal{C}_{Hq}^{(0)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathcal{C}_{Hd}	[-0.15, 0.04]	[-0.29, 0.11]	\mathcal{C}_{Hd} \mathcal{C}_{Hy}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathcal{C}_{Hu}	[-0.056, 0.081]	[-0.13, 0.25]	\mathcal{C}_H	-0.10 0.09 -0.02 -0.09 0.01 -0.10 0.08 -0.01 0.03 0.12 1
\mathcal{C}_{μ}	[-9.6, 6.9]	[-11., 7.0]	$\mathcal{C}_{H\square}$	-0.60 0.58 -0.03 -0.56 0 -0.58 0.43 -0.02 0.12 0.55 0.23 1
$\mathcal{C}_{II\square}$	[-0.96, -0.13]	[-1.6, 5.6]	\mathcal{C}_{HG}	0.07 -0.05 0.02 0.04 -0.13 0.05 -0.06 -0.13 -0.03 -0.10 -0.28 -0.12 1
\mathcal{C}_{HC}	[-0.0038, -0.0002]	[-0.013, 0.010]	\mathcal{C}_{HW}	0.88 -0.85 -0.02 0.83 0.02 0.85 -0.38 -0.24 -0.03 -0.33 -0.11 -0.62 0.07 1
\mathcal{C}_{HW}	[-0.010, 0.005]	[-0.28, 0.12]	\mathcal{C}_{HB} \mathcal{C}_W	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	[-0.0031, 0.0016]	[-0.050, 0.061]	\mathcal{C}_G	-0.05 0.06 0 -0.06 -0.04 -0.06 0.03 -0.03 0 0.03 0.01 0.02 -0.11 -0.03 -0.07 -0.01 1
Cw		[-0.18.0.33]	$\mathcal{C}_{\mu H}$	0 0 -0.01 0 0 0.01 -0.02 0.01 0.02 -0.01 0.02 0 0 0 0 0.04 1
			$\mathcal{C}_{\tau H}$	0 0 -0.01 0 -0.01 0 0.03 -0.05 0.01 0.05 -0.04 0.01 -0.16 0.01 0.01 0 0.05 0.07 1
			\mathcal{C}_{bH}	0.04 -0.11 -0.05 0.11 0.37 0.11 0.01 0.35 0.03 0.09 0.01 0.05 -0.40 0.07 0 0.02 -0.01 0.05 0.28 1
$C_{\mu H}$			\mathcal{C}_{cH}	0.51 -0.48 0.04 0.45 -0.08 0.48 -0.37 -0.06 -0.12 -0.51 -0.22 -0.95 0.15 0.52 0.48 0.06 0 0 0.08 -0.15 1
$\mathcal{C}_{\tau H}$	[-0.0040, 0.028]	[-0.009, 0.029]	\mathcal{C}_{tH}	-0.21 0.22 0 -0.21 -0.07 -0.22 0.15 -0.08 0.03 0.15 -0.19 0.21 0.37 -0.24 -0.14 -0.03 -0.39 -0.02 0.09 -0.01 -0.08 1
\mathcal{C}_{bH}	[-0.036, 0.004]	[-0.029, 0.069]	\mathcal{C}_{tG}	-0.04 0.02 -0.01 -0.02 0.11 -0.02 0.04 0.10 0.02 0.08 0.16 0.09 -0.78 -0.06 -0.03 0 -0.17 -0.05 0.05 0.27 -0.12 0.14 1
\mathcal{C}_{cH}	[-0.15, -0.01]	[-1.1, 0.20]		◆ 23 WCs treated as free and
\mathcal{C}_{tH}	[0.02, 1.2]	[-2.6, 2.6]		
\mathcal{C}_{tG}	[-0.11, -0.01]	[-0.28, 0.21]		independent parameters.

35 \blacklozenge $\Lambda = 1 \text{ TeV}$

DiHiggs measurements

channel	ATLAS	CMS
$b\overline{b}b\overline{b}$	-12.7 ± 12.8	-3.9 ± 3.8
$b\overline{b}\gamma\gamma$	$-6.3^{+9.9}_{-7.5}$	2.5 ± 2.6
$b\overline{b} au au$	-4.1 ± 8.4	-5 ± 15

Running of WCs

(Alonso), Jenkins, Manohar & Trott 1308.2627, 1310.4838, (1312.2014)

