Imprint of quark flavor violating SUSY in h(125) decays at future lepton colliders

K. Hidaka Tokyo Gakugei University

Collaboration with H. Eberl, E. Ginina (HEPHY Vienna)

References:

Phys. Rev. D 91 (2015) 015007 [arXiv:1411.2840 [hep-ph]]

JHEP 1606 (2016) 143 [arXiv:1604.02366 [hep-ph]]

IJMP A34 (2019) 1950120 [arXiv:1812.08010 [hep-ph]]

PoS(EPS-HEP2021)594, 2021 [arXiv:2111.02713 [hep-ph]]

ILC White Paper for Snowmass 2021 [arXiv:2203.07622]

ICHEP2022, 7 July 2022, Bologna, Italy

1. Introduction

- What is the SM-like Higgs boson discovered at LHC?
- It can be the SM Higgs boson.
- It can be a Higgs boson of New Physics.
- This is one of the most important issues in the present particle physics field!
- Here we study a possibility that it is the lightest Higgs boson h^0 of the Minimal Supersymmetric Standard Model (MSSM), focusing on the decays $h^0(125) \to c \, \overline{c}$, $b \, \overline{b}$, $b \, \overline{s}$, $\gamma \gamma$, $g \, g$.

2. MSSM with QFV

Key parameters in this study are:

- * QFV parameters: $\tilde{c}_{L/R} \tilde{t}_{L/R}$ & $\tilde{s}_{L/R} \tilde{b}_{L/R}$ mixing parameters
- * QFC parameter: $\tilde{t}_L \tilde{t}_R \& \tilde{b}_L \tilde{b}_R$ mixing parameters

$$M^2_{O23} = (\tilde{c}_L - \tilde{t}_L \text{ mixing parameter})$$

$$M^2_{U23} = (\tilde{c}_R - \tilde{t}_R \text{ mixing parameter})$$

$$M^2_{D23} = (\tilde{s}_R - \tilde{b}_R \text{ mixing parameter})$$

$$T_{U23} = (\tilde{c}_R - \tilde{t}_L mixing parameter)$$

$$T_{U32} = (\tilde{c}_L - \tilde{t}_R mixing parameter)$$

$$T_{U33} = (\tilde{t}_L - \tilde{t}_R \text{ mixing parameter})$$

$$T_{D23} = (\tilde{s}_R - \tilde{b}_L \text{ mixing parameter})$$

$$T_{D32} = (\tilde{s}_L - \tilde{b}_R mixing parameter)$$

$$T_{D33} = (\tilde{b_L} - \tilde{b_R} mixing parameter)$$

3. Constraints on the MSSM

We respect the following experimental and theoretical constraints:

- (1) The LHC limits on the masses of squarks, sleptons, gluino, charginos and neutralinos.
- (2) The constraint on $(m_{A/H^{+}}, \tan \beta)$ from MSSM Higgs boson search at LHC.
- (3) The constraints on the QFV parameters from the B & K meson data.

$$B(b \rightarrow s \gamma) \quad \Delta M_{Bs} \quad B(B_s \rightarrow \mu^+ \mu^-) \quad B(B_u^+ \rightarrow \tau^+ \nu) \text{ etc.}$$

- (4) The constraints from the observed Higgs boson mass and couplings at LHC; e.g. $121.6 \text{ GeV} < \text{m}_h^0 < 128.6 \text{ GeV}$ (allowing for theoretical uncertainty), $0.71 < \kappa_h < 1.43$ (ATLAS), $0.56 < \kappa_h < 1.70$ (CMS)
- (5) The experimental limit on SUSY contributions to the electroweak ρ parameter $\Delta \rho$ (SUSY) < 0.0012.
- (6) Theoretical constraints from the vacuum stability conditions for the trilinear couplings $T_{U\alpha\beta}$ and $T_{D\alpha\beta}$.

* Constraints on the MSSM parameters from W boson mass data:

The recent m_W data from CDF II [1] is quite inconsistent with the other experimental data. (-> See backup slides.) [1] CDF Collaboration, Science 376, 170–176 (2022)

This issue of the m_W data is not yet settled.

Hence, we do not take into account this m_W constraint on the MSSM parameters in our analysis.

4. Parameter scan

- We compute the $h^0(125)$ decay widths in the MSSM with QFV.
- We take parameter scan ranges as follows:

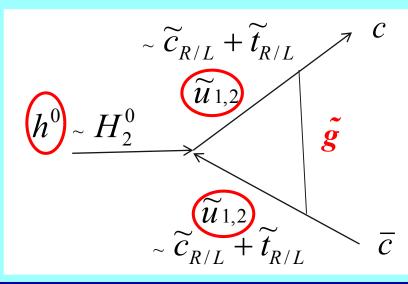
$$1 \text{ TeV} < M_{SUSY} < 5 \text{ TeV}$$
 $10 < \tan \beta < 80$
 $2500 < M_3 < 5000 \text{ GeV}$
 $100 < M_2 < 2500 \text{ GeV}$
 $100 < M_1 < 2500 \text{ GeV}$
 $100 < \mu < 2500 \text{ GeV}$
 $1350 < m_A(pole) < 6000 \text{ GeV}$

etc. etc.

- In the parameter scan, all of the relevant experimental and theoretical constraints are imposed.
- 377180 parameter points are generated and 3208 points survive the constraints.

5. $h^0 \rightarrow c \overline{c}$, $b \overline{b}$, $b \overline{s}$ in the MSSM

- We compute the decay widths $\Gamma(h^0 \to c \ \overline{c})$, $\Gamma(h^0 \to b \ \overline{b})$, and $\Gamma(h^0 \to b \ \overline{s})$ at full 1-loop level in the DRbar renormalization scheme in the MSSM with QFV.
- Main 1-loop correction to $h^0 \rightarrow c \ \overline{c}$:


```
gluino - su loops [ su = (\tilde{t} - \tilde{c} \text{ mixture})] can be enhanced by large trilinear couplings T_{U23}, T_{U32}, T_{U33}
```

- Main 1-loop corrections to $h^0 \rightarrow b \ \overline{b} \ \& \ b \ \overline{s}$:

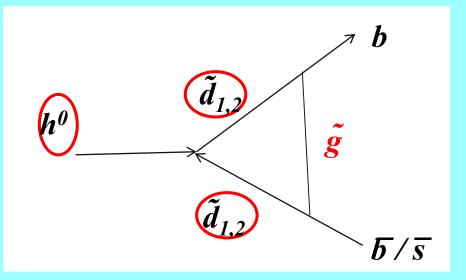
```
gluino – sd loops [ sd = (\tilde{b} - \tilde{s} \text{ mixture})] can be enhanced by large trilinear couplings T_{D23}, T_{D32}, T_{D33} chargino – su loops [ su = (\tilde{t} - \tilde{c} \text{ mixture})] can be enhanced by large trilinear couplings T_{U23}, T_{U32}, T_{U33}
```

In large $\widetilde{c}_{R/L} - \widetilde{t}_{R/L} \& \widetilde{t}_L - \widetilde{t}_R$ mixing scenario;

$$h^0 \sim H_2^0$$
 $\widetilde{u}_{1,2} \sim \widetilde{c}_{R/L} + \widetilde{t}_{R/L}$

In our scenario, "trilinear couplings" ($\widetilde{c}_R - \widetilde{t}_L - H_2^0$, $\widetilde{c}_L - \widetilde{t}_R - H_2^0$, $\widetilde{t}_L - \widetilde{t}_R - H_2^0$ couplings) = ($T_{U23} T_{U32}$, T_{U33}) are large!

 $\widetilde{u}_{1,2} - \widetilde{u}_{1,2} - h^0$ couplings are large!


Gluino loop contributions can be large!

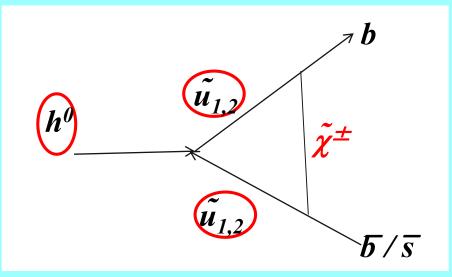
Deviation of $\Gamma(h^0 \to c \ \overline{c})$ from SM width can be large!

In large $\tilde{s}_{R/L}$ - $\tilde{b}_{R/L}$ & \tilde{b}_L - \tilde{b}_R mixing scenario;

$$h^{\theta} \sim -s\alpha H_1^{\theta} + c\alpha H_2^{\theta}$$

$$\tilde{d}_{1,2} \sim \tilde{s}_{R/L} + \tilde{b}_{R/L}$$

In our scenario, "trilinear couplings" $(T_{D23} T_{D32}, T_{D33}) = (\tilde{s}_R - \tilde{b}_L - H_1^0, \tilde{s}_L - \tilde{b}_R - H_1^0, \tilde{b}_L - \tilde{b}_R - H_1^0 \text{ couplings)}$ are large!


 $\tilde{d}_{1,2}$ - $\tilde{d}_{1,2}$ - h^0 couplings are large!

Gluino loop contributions can be large!

Deviation of $\Gamma(h^0 \to b \ \overline{b/s})$ from SM width can be large!

In large $\tilde{c}_{R/L}$ - $\tilde{t}_{R/L}$ & \tilde{t}_L - \tilde{t}_R mixing scenario;

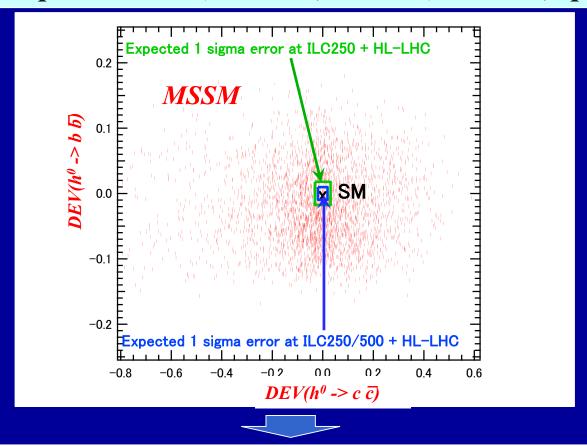
$$\begin{split} h^0 &\sim \boldsymbol{H_2}^0 \\ \tilde{u_{1,2}} &\sim \tilde{c}_{R/L} \,+\, \tilde{t}_{R/L} \\ \tilde{\chi}^\pm &\sim \tilde{W}^\pm + \tilde{H}^\pm \end{split}$$

In our scenario, "trilinear couplings" ($\widetilde{c}_R - \widetilde{t}_L - H_2^0$, $\widetilde{c}_L - \widetilde{t}_R - H_2^0$, $\widetilde{t}_L - \widetilde{t}_R - H_2^0$ couplings) = $(T_{U23} T_{U32}, T_{U33})$ are large!

 $\widetilde{u}_{1,2} - \widetilde{u}_{1,2} - h^0$ couplings are large!

Chargino loop contributions can be large!

Deviation of $\Gamma(h^0 \to b \ \overline{b/s})$ from SM width can be large!


5.1 Deviation of the width from the SM prediction

- The deviation of the width from the SM prediction:

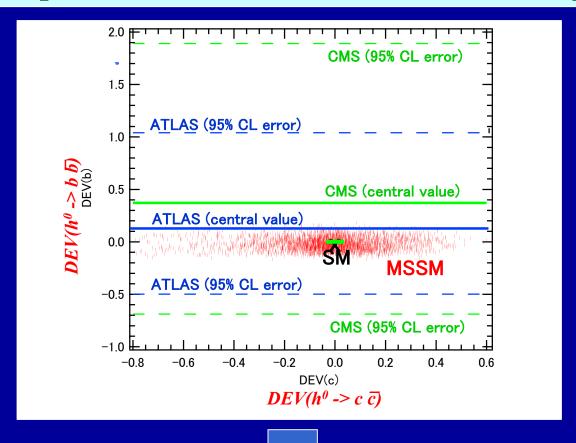
$$\overline{DEV(h^{\theta} \rightarrow XX)} = \Gamma(h^{\theta} \rightarrow XX)_{MSSM} / \Gamma(h^{\theta} \rightarrow XX)_{SM} - 1$$

$$X = c, b$$

Scatter plot in $DEV(h^0 \rightarrow c \ \overline{c}) - DEV(h^0 \rightarrow b \ \overline{b})$ plane

- $DEV(h^0 \rightarrow c \ \overline{c})$ and $DEV(h^0 \rightarrow b \ \overline{b})$ can be very large simultaneously!:

 $DEV(h^0 \rightarrow c \ \overline{c})$ can be as large as $\sim \pm 60\%$.


 $DEV(h^0 \rightarrow b \ \overline{b})$ can be as large as $\sim \pm 20\%$.

- ILC can observe such large deviations from SM at high significance (arXiv:1908.11299)!:

 $\Delta DEV(h^0 \rightarrow c \ \overline{c}) = (3.60\%, 2.40\%, 1.58\%)$ at (ILC250, ILC500, ILC1000)

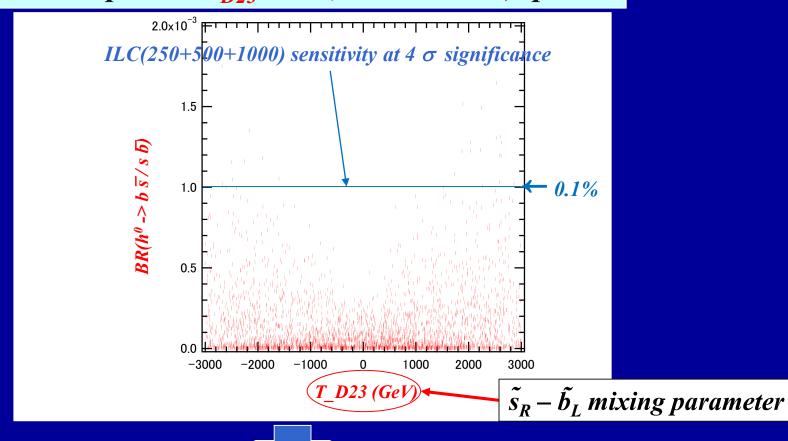
 $\triangle DEV(h^0 \rightarrow b \ b) = (1.98\%, 1.16\%, 0.94\%)$ at (ILC250, ILC500, ILC1000)

Scatter plot in $DEV(h^0 \rightarrow c \ \overline{c}) - DEV(h^0 \rightarrow b \ \overline{b})$ plane

- Recent LHC data:
 - $DEV(h^0 \rightarrow b \ b) = 0.12 + 0.92/-0.62 = [-0.50, 1.04] \ (ATLA S) \ (arXiv:1909.02845) \ DEV(h^0 \rightarrow b \ b) = 0.37 + 1.52/-1.06 = [-0.69, 1.89] \ (CMS) \ (arXiv:1809.10733)$
- Both SM and MSSM are consistent with the recent ATLAS/CMS data! The errors of the recent ATLAS/CMS data are too large!

$5.2 \ \underline{BR(h^0 \rightarrow b \ \overline{s}/s \ b)}$

$$BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b}) \cong 0 \ (SM)$$


 $BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b})$ can be as large as $\sim 0.2\%$ (MSSM with QFV)!

(See also Gomez-Heinemeyer-Rehman, PR D93 (2016) 095021 [arXiv:1511.04342].)

ILC(250+500+1000) sensitivity could be $\sim 0.1\%$ (at 4 σ significance)!

Private communication with Junping Tian; See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].

Scatter plot in T_{D23} - $BR(h^0 \rightarrow b \overline{s}/s \overline{b})$ plane

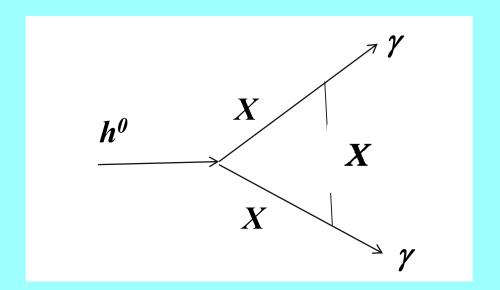
- -There is a strong correlation between T_{D23} $BR(h^0 -> b \overline{s}/s \overline{b})$!
- $BR(h^0 \rightarrow b \overline{s}/s \overline{b})$ can be as large as 0.2% for large T_{D23} !
- ILC(250 + 500 + 1000) sensitivity could be ~ 0.1% at 4 sigma significance!

 Private communication with Junping Tian;
 See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].
- LHC & HL-LHC sensitivity should not be so good due to huge QCD BG!

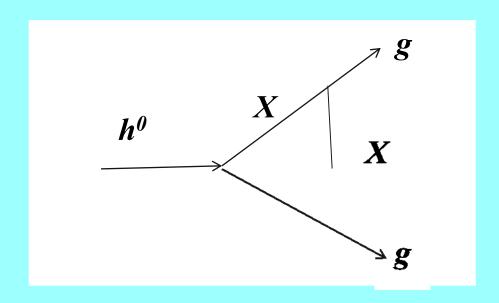
6. $h^0 \rightarrow \gamma \gamma$, g g in the MSSM

- As the h^0 decays to photon photon and gluon gluon are loop-induced decays, these decays are very sensitive to New Physics!
- We compute the widths $\Gamma(h^0 \to \gamma \gamma)$ and $\Gamma(h^0 \to g g)$ at NLO QCD level in the MSSM with QFV.
- Main 1-loop contributions to $h^0 \rightarrow \gamma \gamma$:

```
[W^+/top-quark/su] - loops [su = (\tilde{t} - \tilde{c} mixture)]
```

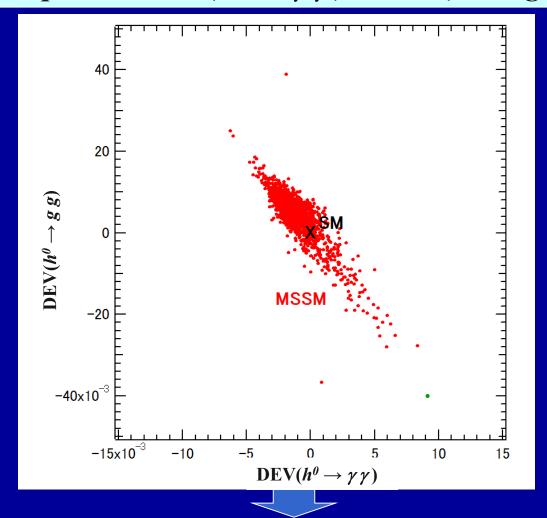

The su-loops can be enhanced by large trilinear couplings T_{U23} , T_{U32} , T_{U33} , resulting in sizable deviation of $\Gamma(h^0 \to \gamma \gamma)$ from the SM width!

- Main 1-loop contributions to $h^0 \rightarrow g g$:


```
[top-quark/su] - loops [su = (\tilde{t} - \tilde{c} mixture)]
```

The su-loops can be enhanced by large trilinear couplings T_{U23} , T_{U32} , T_{U33} , resulting in sizable deviation of $\Gamma(h^0 \to g g)$ from the SM width!

$$X = W^+ / t / \tilde{u}_{1,2}$$



$$X = t / \tilde{u}_{1,2}$$

- We perform a MSSM parameter scan respecting all the relevant theoretical and experimental constraints.
- From the parameter scan, we find the followings:
- (1) DEV($h^{\theta} \to \gamma \gamma$) and DEV($h^{\theta} \to g g$) can be sizable simultaneously: DEV($h^{\theta} \to \gamma \gamma$) can be as large as $\sim \pm 1\%$, DEV($h^{\theta} \to g g$) can be as large as $\sim \pm 4\%$.
- (2) There is a very strong correlation between $DEV(h^0 \to \gamma \gamma)$ and $DEV(h^0 \to g g)$. This correlation is due to the fact that the stop-loop (stop-scharm mixture loop) contributions dominate the two DEVs.
- (3) The deviation of the width ratio $\Gamma(h^0 \to \gamma \gamma) / \Gamma(h^0 \to g g)$ in the MSSM from the SM value can be as large as $\sim \pm 5\%$.

Scatter plot in DEV($h^{\theta} \rightarrow \gamma \gamma$) - DEV($h^{\theta} \rightarrow g g$) plane

- DEV($h^0 \rightarrow \gamma \gamma$) and DEV($h^0 \rightarrow g g$) can be sizable simultaneously!
- -There is a strong correlation between DEV($h^0 \rightarrow \gamma \gamma$) and DEV($h^0 \rightarrow g g$)!
- Future lepton colliders such as ILC can observe such sizable deviations from SM! (See arXiv:1908.11299 and Backup slides))

7. Conclusion

- We have studied the decays h^0 (125GeV) $\rightarrow c \bar{c}$, $b \bar{b}$, $b \bar{s}$, $\gamma \gamma$, g g in the MSSM with QFV.
- Performing a systematic MSSM parameter scan respecting all of the relevant theoretical and experimental constraints, we have found the followings:
 - * $DEV(h^0 \rightarrow c \ \overline{c})$ and $DEV(h^0 \rightarrow b \ \overline{b})$ can be very large simultaneously! : $DEV(h^0 \rightarrow c \ \overline{c})$ can be as large as $\sim \pm 60\%$, $DEV(h^0 \rightarrow b \ \overline{b})$ can be as large as $\sim \pm 20\%$.
 - * The deviation of the width ratio $\Gamma(h^0 -> b \ \overline{b}) / \Gamma(h^0 -> c \ \overline{c})$ from the SM value can exceed $\sim +100\%$.
 - * $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ can be as large as $\sim 0.2\%$! ILC(250 + 500 + 1000) sensitivity could be $\sim 0.1\%$ at 4 sigma signal significance!

- * $DEV(h^0 \rightarrow \gamma \gamma)$ and $DEV(h^0 \rightarrow g g)$ can be sizable simultaneously! : $DEV(h^0 \rightarrow \gamma \gamma)$ can be as large as $\sim \pm 1\%$, $DEV(h^0 \rightarrow g g)$ can be as large as $\sim \pm 4\%$.
- * The deviation of the width ratio $\Gamma(h^0 \to \gamma \gamma)/\Gamma(h^0 \to g g)$ from the SM value can be as large as $\sim \pm 5\%$.
- * There is a very strong correlation between $DEV(h^{\theta} \rightarrow \gamma \gamma)$ and $DEV(h^{\theta} \rightarrow g g)$. This correlation is due to the fact that the stop-loop (stop-scharm mixture loop) contributions dominate the two DEVs.
- All of these large deviations in the h^0 (125) decays are due to large \tilde{c} \tilde{t} mixing & large \tilde{c} / \tilde{t} involved trilinear couplings T_{U23} , T_{U32} , T_{U33} and large \tilde{s} \tilde{b} mixing & large \tilde{s} / \tilde{b} involved trilinear couplings T_{D23} , T_{D32} , T_{D33} .
- Future lepton colliders such as ILC, CLIC, CEPC, FCC-ee can observe such large deviations from SM at high significance!
- In case the deviation pattern shown here is really observed at the future lepton colliders, then it would strongly suggest the discovery of QFV SUSY (MSSM with QFV)!
- See next slide also.

- Our analysis suggests the following:

PETRA/TRISTAN e- e+ collider discovered virtual Z^0 effect for the first time.

Later, CERN $p \bar{p}$ collider discovered the Z^0 boson.

Similarly, lepton colliders, such as ILC, could discover virtual Sparticle effects for the first time in $h^0(125)$ decays! Later, FCC-hh p p collider could discover the Sparticles!

END

Thank you!

Backup Slides

2. MSSM with QFV

The basic parameters of the MSSM with QFV:

```
\{tan\beta, m_A, M_1, M_2, M_3, \mu, M^2_{Q,\alpha\beta}, M^2_{U,\alpha\beta}, M^2_{D,\alpha\beta}, T_{U\alpha\beta}, T_{D\alpha\beta}\}
  (at Q = 1 TeV scale) (\alpha, \beta = 1, 2, 3 = u, c, t \text{ or } d, s, b)
tan\beta: ratio of VEV of the two Higgs doublets <H^0_2>/<H^0_1>
m<sub>A</sub>: CP odd Higgs boson mass (pole mass)
M_1, M_2, M_3: U(1), SU(2), SU(3) gaugino masses
             higgsino mass parameter
\mu:
M^2_{Q,\alpha\beta}: left squark soft mass matrix
M^2_{U\alpha\beta}: right up-type squark soft mass matrix
M^2_{D\alpha\beta}: right down-type squark soft mass matrix
T_{Ulphaeta}: trilinear coupling matrix of up-type squark and Higgs boson
T<sub>Dαβ</sub>: trilinear coupling matrix of down-type squark and Higgs boson
```

2. Key parameters of MSSM

Key parameters in this study are:

```
* QFV parameters: M_{Q23}^2, M_{U23}^2, M_{D23}^2, T_{U23}, T_{U32}, T_{D23}, T_{D32}
```

* QFC parameter:
$$T_{U33}$$
, T_{D33}

$$M^2_{023} = (\tilde{c}_L - \tilde{t}_L \text{ mixing parameter})$$

$$M^2_{U23} = (\tilde{c}_R - \tilde{t}_R \text{ mixing parameter})$$

$$M_{D23}^2 = (\tilde{s}_R - \tilde{b}_R \text{ mixing parameter})$$

$$T_{U23} = (\tilde{c}_R - \tilde{t}_L \text{ mixing parameter})$$

$$T_{U32} = (\tilde{c}_L - \tilde{t}_R \text{ mixing parameter})$$

$$T_{U33} = (\tilde{t}_L - \tilde{t}_R \text{ mixing parameter})$$

$$T_{D23} = (\tilde{s}_R - \tilde{b}_L \text{ mixing parameter})$$

$$T_{D32} = (\tilde{s}_L - \tilde{b}_R \text{ mixing parameter})$$

$$T_{D33} = (\tilde{b}_L - \tilde{b}_R \text{ mixing parameter})$$

4. Parameter scan for h⁰ decay in the MSSM

Table 1: Scanned ranges and fixed values of the MSSM parameters (in units of GeV or GeV^2 , except for $\tan \beta$). The parameters that are not shown explicitly are taken to be zero. $M_{1,2,3}$ are the U(1), SU(2), SU(3) gaugino mass parameters.

$\tan \beta$	M_1	M_2	M_3	μ	$m_A(pole)$
10 ÷ 80	$100 \div 2500$	$100 \div 2500$	2500 ÷ 5000	$100 \div 2500$	$1350 \div 6000$
M_{Q22}^2	M_{Q33}^2	$ M_{Q23}^2 $	M_{U22}^{2}	M_{U33}^2	$ M_{U23}^2 $
$2500^2 \div 4000^2$	$2500^2 \div 4000^2$	$< 1000^{2}$	$1000^2 \div 4000^2$	$600^2 \div 3000^2$	$< 2000^2$
M_{D22}^2	M_{D33}^2	$ M_{D23}^2 $	$ T_{U23} $	$ T_{U32} $	$ T_{U33} $
$2500^2 \div 4000^2$	$1000^2 \div 3000^2$	$< 2000^2$	< 4000	< 4000	< 5000
$ T_{D23} $	$ T_{D32} $	$ T_{D33} $	$ T_{E33} $		
< 3000	< 3000	< 4000	< 500		

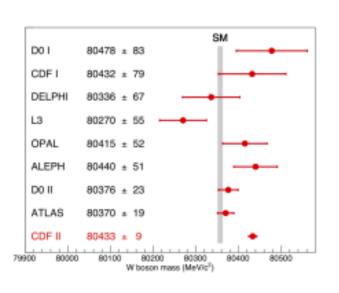
M_{Q11}^2	M_{U11}^2	M_{D11}^2	M_{L11}^2	M_{L22}^2	M_{L33}^2	M_{E11}^2	M_{E22}^2	M_{E33}^2
4500^{2}	4500^{2}	4500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}

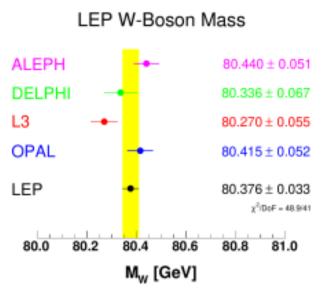
Constraints on the MSSM parameters from K & B meson and h⁰ data:

Table 5: Constraints on the MSSM parameters from the K- and B-meson data relevant mainly for the mixing between the second and the third generations of squarks and from the data on the h^0 mass and couplings κ_b , κ_g , κ_γ . The fourth column shows constraints at 95% CL obtained by combining the experimental error quadratically with the theoretical uncertainty, except for $B(K_L^0 \to \pi^0 \nu \bar{\nu})$, m_{h^0} and $\kappa_{b,g,\gamma}$.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Observable	Exp. data	Theor. uncertainty	Constr. (95%CL)
$\kappa_{g} = \begin{bmatrix} 1.03^{+0.14}_{-0.12} & (95\% \text{ CL}) & [50] \\ 1.18^{+0.31}_{-0.27} & (95\% \text{ CL}) & [51] \\ \kappa_{\gamma} = \begin{bmatrix} 1.03^{+0.14}_{-0.12} & (ATLAS) \\ 1.00 \pm 0.12 & (95\% \text{ CL}) & [50] \\ 1.07^{+0.27}_{-0.29} & (95\% \text{ CL}) & [51] \end{bmatrix} = \begin{bmatrix} 1.03^{+0.14}_{-0.12} & (ATLAS) \\ 1.18^{+0.31}_{-0.27} & (CMS) \\ 1.00 \pm 0.12 & (ATLAS) \\ 1.07^{+0.27}_{-0.29} & (CMS) \end{bmatrix}$	$10^{3} \times \epsilon_{K} $ $10^{15} \times \Delta M_{K} \text{ [GeV]}$ $10^{9} \times B(K_{L}^{0} \to \pi^{0} \nu \bar{\nu})$ $10^{10} \times B(K^{+} \to \pi^{+} \nu \bar{\nu})$ $\Delta M_{B_{s}} \text{ [ps}^{-1}]$ $10^{4} \times B(b \to s\gamma)$ $10^{6} \times B(b \to s \ l^{+}l^{-})$ $(l = e \text{ or } \mu)$ $10^{9} \times B(B_{s} \to \mu^{+}\mu^{-})$ $10^{4} \times B(B^{+} \to \tau^{+}\nu)$ $m_{h^{0}} \text{ [GeV]}$ κ_{b}	$\begin{array}{c} 2.228 \pm 0.011 \; (68\% \; \mathrm{CL}) \; [21] \\ 3.484 \pm 0.006 \; (68\% \; \mathrm{CL}) \; [21] \\ < 3.0 \; (90\% \; \mathrm{CL}) \; [21] \\ 1.7 \pm 1.1 \; (68\% \; \mathrm{CL}) \; [21] \\ 17.757 \pm 0.021 \; (68\% \; \mathrm{CL}) \; [21,41] \\ 3.32 \pm 0.15 \; (68\% \; \mathrm{CL}) \; [21,41] \\ 1.60 ^{+0.48}_{-0.45} \; (68\% \; \mathrm{CL}) \; [43] \\ \\ 2.69 ^{+0.37}_{-0.35} \; (68\% \; \mathrm{CL}) \; [43] \\ \\ 1.06 \pm 0.19 \; (68\% \; \mathrm{CL}) \; [44] \\ 125.09 \pm 0.24 \; (68\% \; \mathrm{CL}) \; [48] \\ 1.06^{+0.37}_{-0.35} \; (95\% \; \mathrm{CL}) \; [50] \\ 1.17^{+0.53}_{-0.61} \; (95\% \; \mathrm{CL}) \; [51] \\ 1.03^{+0.14}_{-0.12} \; (95\% \; \mathrm{CL}) \; [50] \\ 1.18^{+0.31}_{-0.27} \; (95\% \; \mathrm{CL}) \; [51] \\ 1.00 \pm 0.12 \; (95\% \; \mathrm{CL}) \; [50] \\ \end{array}$	±0.28 (68% CL) [40] ±1.2 (68% CL) [40] ±0.002 (68% CL) [21] ±0.04 (68% CL) [21] ±2.7 (68% CL) [42] ±0.23 (68% CL) [11] ±0.11 (68% CL) [44] ±0.23 (68% CL) [46] ±0.29 (68% CL) [47]	$\begin{array}{c} 2.228 \pm 0.549 \\ 3.484 \pm 2.352 \\ < 3.0 \ (90\% \ \text{CL}) \\ 1.7^{+2.16}_{-1.70} \\ 17.757 \pm 5.29 \\ 3.32 \pm 0.54 \\ 1.60 ^{+0.97}_{-0.91} \\ \\ 2.69 ^{+0.85}_{-0.82} \\ 1.06 \pm 0.69 \\ 125.09 \pm 3.48 \\ 1.06^{+0.37}_{-0.35} \ (\text{ATLAS}) \\ 1.17^{+0.53}_{-0.61} \ (\text{CMS}) \\ 1.03^{+0.14}_{-0.12} \ (\text{ATLAS}) \\ 1.18^{+0.31}_{-0.27} \ (\text{CMS}) \\ 1.00 \pm 0.12 \ (\text{ATLAS}) \\ \end{array}$

Constraints on the MSSM parameters from W boson mass data:

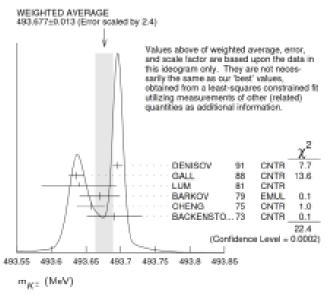

The recent m_W data from CDF II [1] is quite inconsistent with the other experimental data. (-> See next slides.) [1] CDF Collaboration, Science 376, 170–176 (2022)

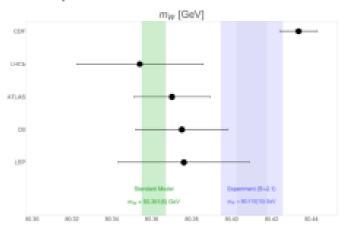

This issue of the m_W data is not yet settled.

Hence, we do not take into account this m_W constraint on the MSSM parameters in our analysis.

From G. Wilson's talk at ECFA Higgs Factory seminars: Precision physics in the e+e--> WW region, June 10 2022: https://indico.cern.ch/event/1163667/

What to think of $m_{\rm W}$ measurements?

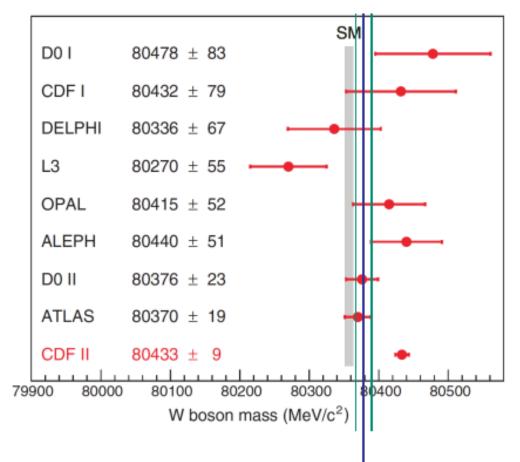



- The LEP results are based on 42 separate measurements with a **healthy** χ^2 .
- The LEP-combined (33 MeV), LHCb (32 MeV), D0 Run II (23 MeV), ATLAS (19 MeV) and CDF Run II (9.4 MeV) measurements have a $\chi^2/\text{DoF} = 17.1/4$, with p-value of **0.2%** for compatibility (neglecting correlations).
- So reasonably strong evidence that the ensemble of experimental results are inconsistent with each other independent of any SM prediction.
- The standard PDG procedure is to add a scale factor "democratically" to all measurements to parametrize our ignorance.

PDG scale factors

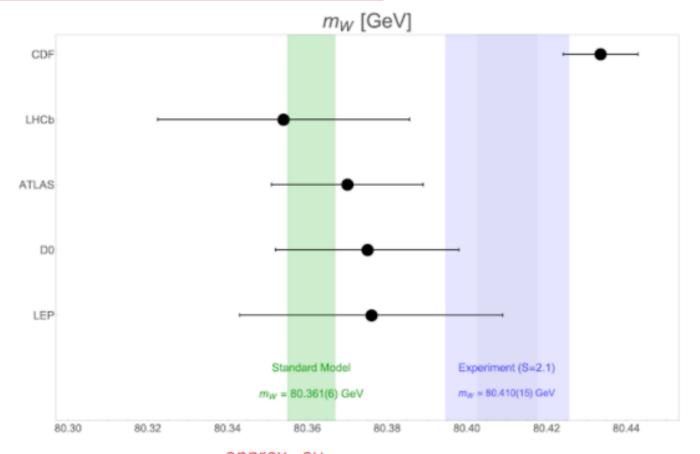
(What can happen with supposed high precision measurements) The new world average $m_{\rm W}$ uncertainty should be scaled up by about 2.1 leading to an uncertainty of 15 MeV in PDG-2022 compared with 12 MeV in PDG-2020.

The charged kaon mass has been in this scale-factored state for 30 years!


Plot from Resonaances blog (Adam Falkowski). Independently I had also done this and concluded that the scale-factored world-average is +3.2σ off the SM value used by CDF

Perhaps one or more experiments has underestimated uncertainties. Also may be difficult to measure the same thing in $p\bar{p}$, pp, and e^+e^- collisions. Strong motivation to measure m_W well in complementary ways in e^+e^- collisions!

From S. Heinemeyer's talk at IDT-WG3-Phys Open Meeting on mW, 12 May 2022: https://agenda.linearcollider.org/event/9357/


1. Introduction: the mass of the W-boson

[CDF '22]

⇒ large discrepancy with the SM prediction

 \Rightarrow large discrepancy with other measurements: $M_W^{\rm PDG} = 80379 \pm 12~{
m MeV}$

- \Rightarrow approximation yields $M_W^{\rm approx-av.} = 80410 \pm 15~{\rm MeV} \sim {\rm 3}\,\sigma$
- ⇒ enlarged uncertainty because of "bad agreement" between older and new measurements ⇒ PDG prescription

Main SUSY one-loop contributions to $h^0 \rightarrow c \overline{c}$

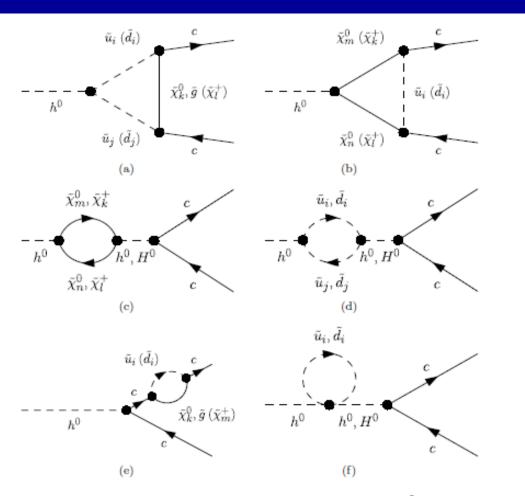


Figure 2: The main one-loop contributions with SUSY particles in $h^0 \to c\bar{c}$. The corresponding diagram to (e) with the self-energy contribution to the other charm quark is not shown explicitly.

5.2 Deviation of width ratio from the SM prediction

- The deviation of the width ratio from the SM prediction:

$$DEV(b/c) = [\Gamma(b) / \Gamma(c)]_{MSSM} / [\Gamma(b) / \Gamma(c)]_{SM} - 1$$

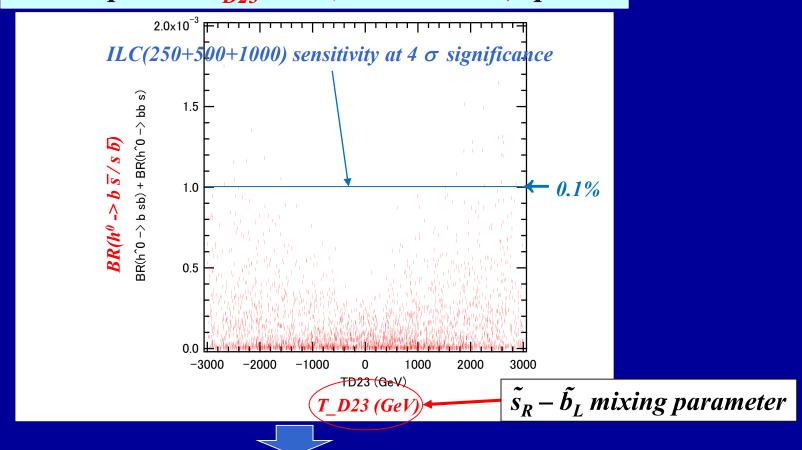
$$\Gamma(X) = \Gamma(h^0 -> XX)$$

Scatter plot in T_{U32} – DEV(b/c) plane

- -There is a strong correlation between T_{U32} DEV(b/c)!
- DEV(b/c) can exceed ~ +100% for large T_{U32} !

$5.2 \ \underline{BR(h^0 \rightarrow b \ \overline{s}/s \ b)}$

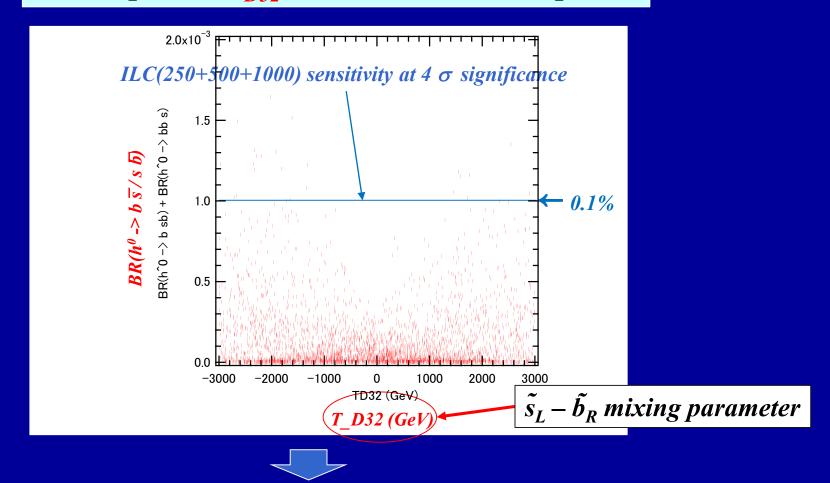
$$BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b}) \cong 0 \ (SM)$$


 $BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b})$ can be as large as $\sim 0.2\%$ (MSSM with QFV)!

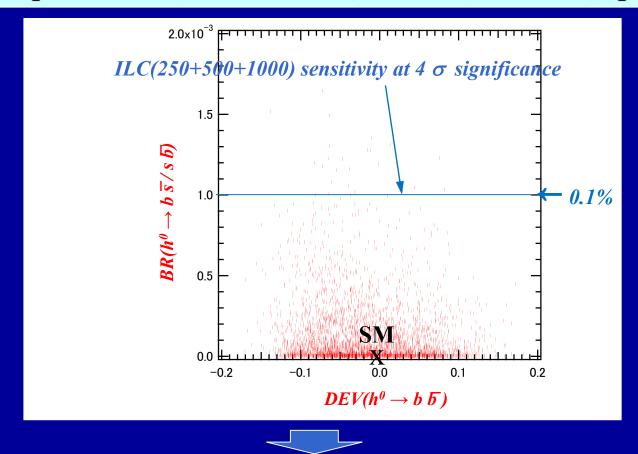
(See also Gomez-Heinemeyer-Rehman, PR D93 (2016) 095021 [arXiv:1511.04342].)

ILC(250+500+1000) sensitivity could be $\sim 0.1\%$ (at 4 σ significance)!

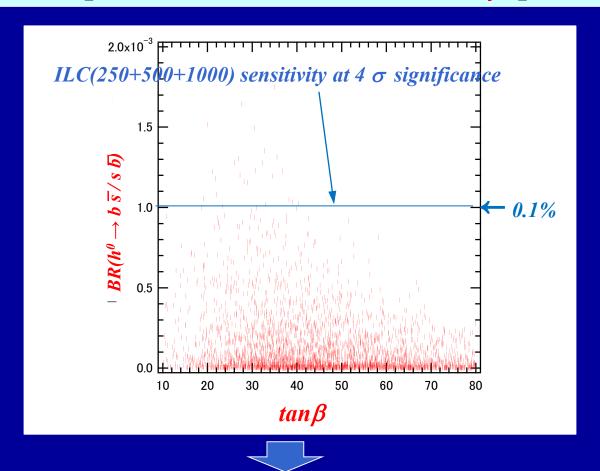
Private communication with Junping Tian;
See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657]


Scatter plot in T_{D23} - $BR(h^0 \rightarrow b \overline{s}/s \overline{b})$ plane

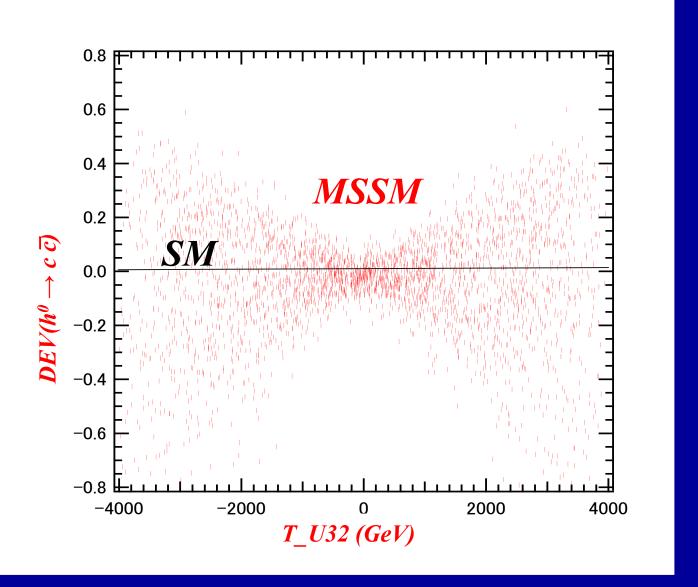
- -There is a strong correlation between T_{D23} $BR(h^0 -> b \overline{s}/s \overline{b})$!
- $BR(h^0 \rightarrow b \ \overline{s} / s \ \overline{b})$ can be as large as 0.2% for large T_{D23} !
- ILC(250 + 500 + 1000) sensitivity could be ~ 0.1% at 4 sigma significance!


 Private communication with Junping Tian;
 See also Barducci et al., JHEP 12 (2017) 105 [arXiv:1710.06657].
- LHC & HL-LHC sensitivity should not be so good due to huge QCD BG!

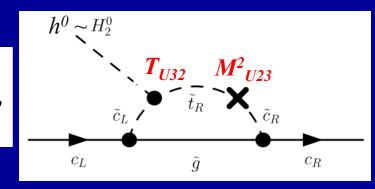
Scatter plot in T_{D32} - $BR(h^0 \rightarrow b \overline{s}/s \overline{b})$ plane


- There is also a strong correlation between T_{D32} $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})!$
- $BR(h^0 \rightarrow b \overline{s}/s \overline{b})$ can be as large as 0.2% for large T_{D32} !

Scatter plot in $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b}) - DEV(h^0 \rightarrow b \ \overline{b})$ plane


- There is a strong correlation between $DEV(h^0 \rightarrow b \ \overline{b}) \ \& \ BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})!$
- This is due to the fact that $DEV(h^0 \to b \ \overline{b})$ & $BR(h^0 \to b \ \overline{s}/s \ \overline{b})$ have a common origin of enhancement effect, i.e. large trilinear couplings $T_{D23,32,33}$ & $T_{U23,32,33}$.

Scatter plot in $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ - $tan\beta$ plane


- There is a strong correlation between $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$ & $tan\beta$!
- $BR(h^0 \rightarrow b \overline{s}/s \overline{b})$ can be as large as 0.2% for $tan \beta \sim 30!$

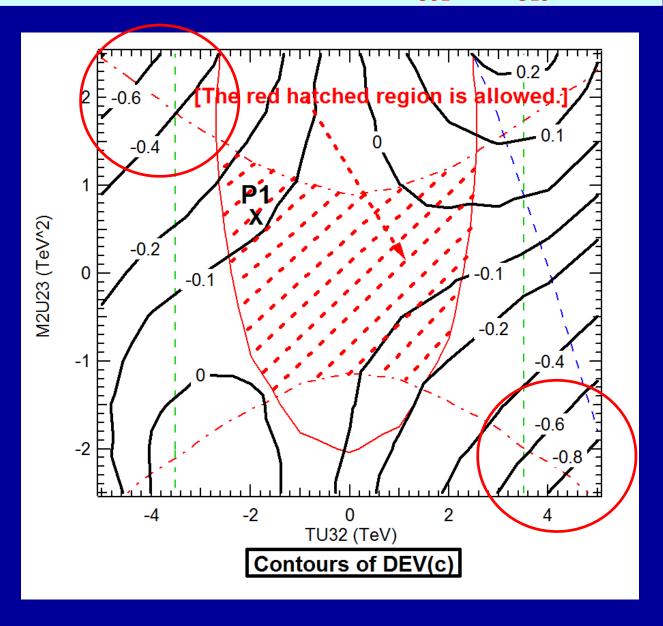
Caveat for very large $DEV(h^0 \rightarrow c \ \overline{c})$

Caveat for very large $DEV(h^0 \rightarrow c \bar{c})$

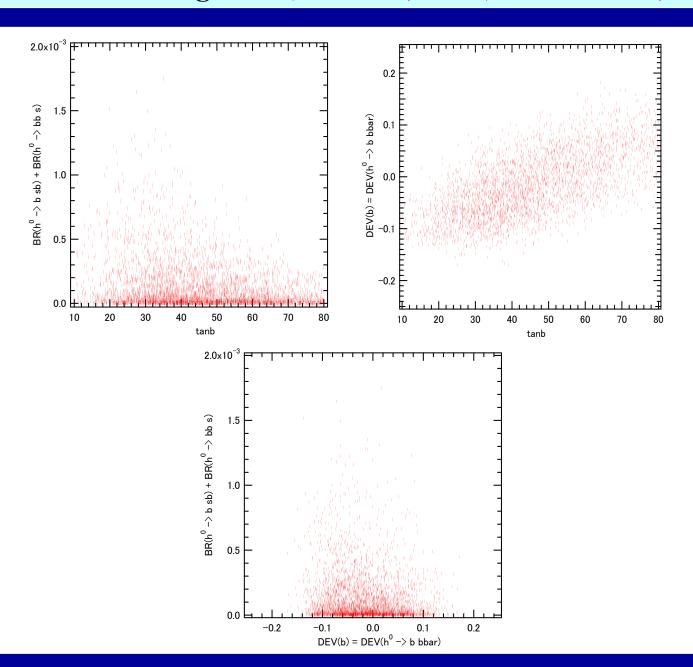
Gluino loop contribution to $h^0 \to c \ \overline{c}$ can be very large (positive and negative) for large $T_{U32} * M^2_{U23}!$

The interference term between the tree diagram and the gluino one-loop diagram can be very large (positive and negative) for large $T_{U32}*M^2_{U23}$, which can lead to even NEGATIVE width $\Gamma(h^0 \to c \ \overline{c})$ at one-loop level!

In this case perturbation theory breaks down!



A large deviation of $\Gamma(h^0 \to c \ \overline{c})$ from the SM value is in principle possible due to large values of the product $T_{U32} * M^2_{U23}$.



Since there is no significant physical constraint on this product, the deviation $DEV(h^0 \to c \ \overline{c})$ can be unnaturally large. So, we show only the results with a deviation from the SM up to $\sim +/-60\%$.

Contours of DEV($h^0 \rightarrow c \ \overline{c}$) in $T_{U32} - M^2_{U23}$ plane

Correlations among $DEV(h^0 \rightarrow b \ \overline{b})$, $BR(h^0 \rightarrow b \ \overline{s}/s \ \overline{b})$, $tan\beta$

Effect of Resummation of the bottom Yukawa coupling at large $tan \beta$

As for $\Gamma(h^0 \to b \, \overline{b})$ & $\Gamma(h^0 \to b \, \overline{s}/s \, \overline{b})$, we have considered the large $\tan \beta$ enhancement and the resummation of the bottom Yukawa coupling [1]. It turns out, however, that in our case with large m_A close to the decoupling Higgs limit, the resummation effect (Δ_b effect) is very small (< 0.1%) [2].

- [1] M. Carena et al., Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516].
- [2] H. Eberl, E. Ginina, A. Bartl, K. Hidaka and W. Majerotto, JHEP 06 (2016) 143 [arXiv:1604.02366 [hep-ph]];
 - E. Ginina, A. Bartl, H. Eberl, K. Hidaka and W. Majerotto, PoS(EPS-HEP2015)146 [arXiv:1510.03714 [hepph]].

Benchmark scenario P1

Table 2: The MSSM parameters for the reference point P1 (in units of GeV or GeV² expect for $\tan \beta$). All parameters are defined at scale Q = 1 TeV, except $m_A(pole)$. The parameters that are not shown here are taken to be zero.

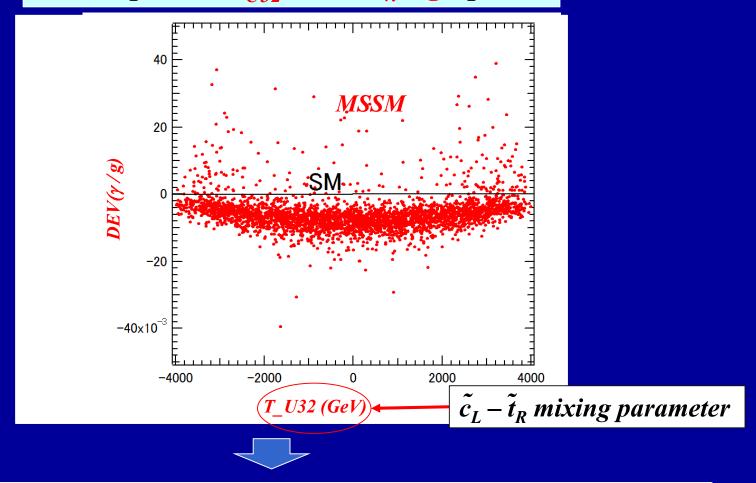
$\tan \beta$	M_1	M_2	M_3	mu	$m_A(pole)$
33	1660	765	4615	870	5325
M_{Q22}^{2}	M_{Q33}^{2}	M_{Q23}^2	M_{U22}^2	M_{U33}^2	M_{U23}^2
3975^{2}	3160^{2}	920^{2}	3465^{2}	1300^{2}	795^{2}
M_{D22}^2	M_{D33}^2	M_{D23}^2	T_{U23}	T_{U32}	T_{U33}
2620^{2}	2425^{2}	-1625^{2}	-2040	-1880	-4945
T_{D23}	T_{D32}	T_{D33}	T_{E33}		
-2360	1670	-2395	-300		

M_{Q11}^2	M_{U11}^2	M_{D11}^2	M_{L11}^2	M_{L22}^2	M_{L33}^2	M_{E11}^2	M_{E22}^2	M_{E33}^2
4500^{2}	4500^{2}	4500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}	1500^{2}

Physical masses for Benchmark scenario P1

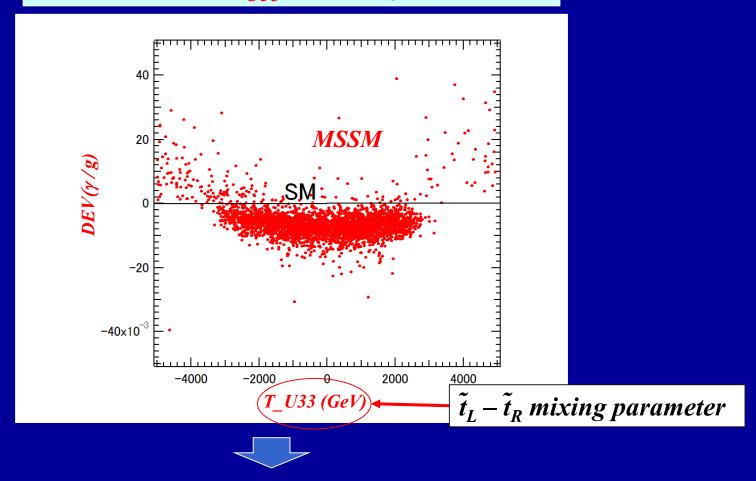
Table 3: Physical masses in GeV of the particles for the scenario of Table 2.

$m_{ ilde{\chi}^0_1}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}^0_4}$	$m_{\tilde{\chi}_1^+}$	$m_{ ilde{\chi}_2^+}$
781	882	911	1669	782	914


m_{h^0}	m_{H^0}	m_{A^0}	m_{H^+}
124	5325	5325	5359

$m_{ ilde{g}}$	$m_{ ilde{u}_1}$	$m_{ ilde{u}_2}$	$m_{ ilde{u}_3}$	$m_{ ilde{u}_4}$	$m_{ ilde{u}_5}$	$m_{ ilde{u}_6}$
4424	868	3011	3331	3877	4402	4402

$m_{ ilde{d}_1}$	$m_{ ilde{d}_2}$	$m_{ ilde{d}_3}$	$m_{ ilde{d}_4}$	$m_{ ilde{d}_5}$	$m_{ ilde{d}_6}$
1705	2833	3010	3877	4397	4403


$m_{ ilde{ u}_1}$	$m_{ ilde{ u}_2}$	$m_{ ilde{ u}_3}$	$m_{ ilde{l}_1}$	$m_{ ilde{l}_2}$	$m_{ ilde{l}_3}$	$m_{ ilde{l}_4}$	$m_{ ilde{l}_5}$	$m_{ ilde{l}_6}$
1509	1509	1528	1489	1489	1509	1512	1512	1545

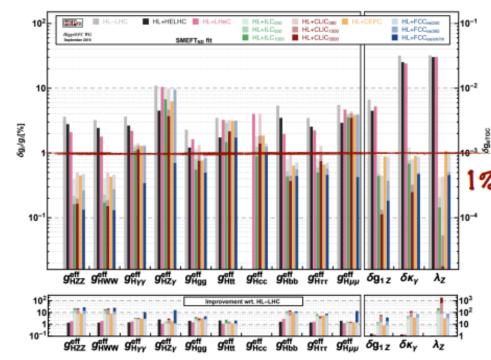
Scatter plot in T_{U32} – $DEV(\gamma/g)$ plane

- -There is a strong correlation between T_{U32} $DEV(\gamma/g)$!
- $DEV(\gamma/g)$ can be as large as $\sim +4\%$ for large T_{U32} !

Scatter plot in T_{U33} – $DEV(\gamma/g)$ plane

- -There is a strong correlation between T_{U33} $DEV(\gamma/g)$!
- $DEV(\gamma/g)$ can be as large as $\sim +4\%$ for large T_{U33} !

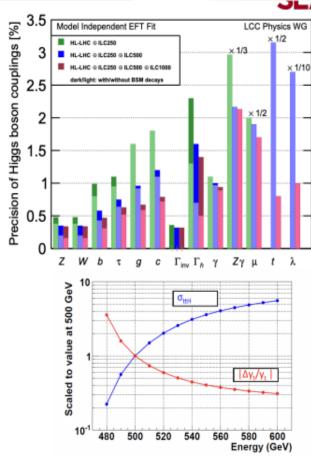
Higgs couplings at future colliders


Higgs coupling precision in % at future colliders

arXiv:1910.11775,arXiv:1905.03764

CERN-LPCC-2018-04

- Future colliders under consideration will improve with respect to the HL-LHC the understanding of the Higgs boson couplings - 1-5%
 - Coupling to charm quark could be measured with an accuracy of ~1% in future e+emachines
 - Couplings to μ/γ/Zγ benefit the most from the large dataset available at HL-LHC
 - At low energy top-Higgs coupling is not accessible at future lepton colliders


Higgs couplings at future colliders

Higgs coupling precision in % for ILC

arXiv:2203	.07622
arXiv:1908	.11299
arXiv:1506	.07830
	(7) (1)

	ILC250		II	LC500	ILC1000	
coupling	full	no BSM	full	${\rm no}\;{\rm BSM}$	full	no BSM
hZZ	0.49	0.38	0.35	0.20	0.34	0.16
hWW	0.48	0.38	0.35	0.20	0.34	0.16
hbb	0.99	0.80	0.58	0.43	0.47	0.31
h au au	1.1	0.95	0.75	0.63	0.63	0.52
hgg	1.6	1.6	0.96	0.91	0.67	0.59
hcc	1.8	1.7	1.2	1.1	0.79	0.72
$h\gamma\gamma$	1.1	1.0	1.0	0.96	0.94	0.89
$h\gamma Z$	8.9	8.9	6.5	6.5	6.4	6.4
$h\mu\mu$	4.0	4.0	3.8	3.7	3.4	3.4
htt	—	_	6.3	6.3	1.0	1.0
hhh	_	_	20	20	10	10
Γ_{tot}	2.3	1.3	1.6	0.70	1.4	0.50
Γ_{inv}	0.36	_	0.32	_	0.32	_

Note C³ would run at 550 GeV, a factor 2 improvement to the top-Yukawa coupling (*)

DEV error - coupling error relation

 $\triangle DEV(h \rightarrow XX) = 2 \delta g(hXX)$

 $\delta g(hXX) = [Expected relative error of coupling g(hXX)]$

 $\Delta DEV(h \rightarrow XX) = [Expected absolute error of deviation$ $<math>DEV(h \rightarrow XX)]$