New BSM Physics with LHeC and FCC-eh

Oliver Fischer

ICHEP Bologna 09/07/22

The Large Hadron-Electron Collider at the HL-LHC

LHeC and FCC-he Study Group

P. Agostini et al., [arXiv:2007.14491 [hep-ex]]

LHeC $E_e=50$ GeV, $\sqrt{s}\simeq 1.2$ TeV, $\mathcal{L}_{int}=1$ ab $^{-1}$, parallel to HL-LHC FCC-he $E_e=50$ GeV, $\sqrt{s}\simeq 3.2$ TeV, $\mathcal{L}_{int}=3$ ab $^{-1}$, parallel to FCC-hh

The Large Hadron-Electron Collider at the HL-LHC – chapter 8

3	Sear	rches f	or Physics Beyond the Standard Model	- 1	88
	8.1	Introd	uction	. :	188
	8.2	Extens	sions of the SM Higgs Sector	. :	188
		8.2.1	Modifications of the Top-Higgs interaction	. :	189
		8.2.2	Charged scalars	. :	189
		8.2.3	Neutral scalars	. :	190
		8.2.4	Modifications of Higgs self-couplings	. :	191
		8.2.5	Exotic Higgs boson decays	. :	192
	8.3	Search	nes for supersymmetry	. :	192
		8.3.1	Search for the SUSY Electroweak Sector: prompt signatures	. :	193
		8.3.2	Search for the SUSY Electroweak Sector: long-lived particles	. :	194
		8.3.3	R-parity violating signatures	. :	195
	8.4	Feebly	Interacting Particles	. :	196
		8.4.1	Searches for heavy neutrinos	. :	196
		8.4.2	Fermion triplets in type III seesaw	. :	197
		8.4.3	Dark photons	. :	199
		8.4.4	Axion-like particles	. :	200
	8.5	Anoma	nomalous Gauge Couplings		201
		8.5.1	Radiation Amplitude Zero	. :	202
	8.6	Theori	ies with heavy resonances and contact interaction	. :	202
		8.6.1	Leptoquarks	. :	203
		8.6.2	Z' mediated charged lepton flavour violation	. :	204
		8.6.3	Vector-like quarks	. :	205
		8.6.4	Excited fermions (ν^*, e^*, u^*)	. :	206
		8.6.5	Colour octet leptons	. :	206
		8.6.6	Quark substructure and Contact interactions	. :	206

Beyond the Standard Model studies at ep

► Electron-proton collider ideal laboratory to study common features of electrons and quarks with EW / VBF production, LQ,multi-jet final states, forward objects

Upside:

- Small background (no QCD interaction between e and p)
- Very low pileup
- **Downside:** low production rates for new physics processes due to small \sqrt{s}
- Increased engagement from theory community in recent years, summarised in "chapter 8" (almost 100 articles).

Here: brief overview over some of the "latest" contributions.

Searching for charged lepton flavor violation at ep colliders

S. Antusch, A. Hammad and A. Rashed, JHEP 03 (2021), 230 [arXiv:2010.08907 [hep-ph]].

Lepton flavor violating processes

- An effective vertex couples incoming electron to a muon or a tau and a neutral scalar or vector boson.
- ► Flavor changing physics parametrised via an effective vertex coupling of leptons with Higgs, photon, and Z.
- Analysis for the LHeC at the detector level.

Backgrounds: small cross sections, well separable

#	Backgrounds τ final state	$\sigma_{(LHeC)}[Pb]$
bkg1	$pe^- \rightarrow Z/\gamma^* (\rightarrow \tau^- \tau^+) \nu_l j$	0.0316
bkg2	$pe^- \rightarrow W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau}) e^- j$	0.2657
bkg3	$pe^- \rightarrow ZZ(\rightarrow \tau^-\tau^+) \nu_l j$	1.1×10^{-5}
bkg4	$pe^- \rightarrow Z(\rightarrow \tau^- \tau^+)W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau}) \nu_l j$	2.64×10^{-5}

#	Backgrounds μ final state	$\sigma_{(LHeC)}[Pb]$
bkg1	$pe^- \rightarrow Z/\gamma^* (\rightarrow \mu^- \mu^+) \nu_l j$	0.0316
bkg2	$pe^- \rightarrow W^{\pm}(\rightarrow \mu^{\pm} \nu_{\mu}) e^- j$	0.2657
bkg3	$pe^- \rightarrow Z/\gamma^* (\rightarrow \tau^- \tau^+ \rightarrow \text{leptons}) \nu_l j$	9.1×10^{-4}
bkg4	$pe^- \rightarrow W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau} \rightarrow \text{leptons}) e^- j$	0.0451
bkg5	$pe^- \rightarrow ZZ(\rightarrow \mu^- \mu^+) \nu_l j$	1.1×10^{-5}
bkg6	$pe^- \rightarrow Z(\rightarrow \mu^- \mu^+)W^{\pm}(\rightarrow \mu^{\pm} \nu_{\mu}) \nu_l j$	2.64×10^{-5}

Cut-based optimisation of signal-to-background ratio.

Sensitivity to flavor violation

- ▶ Model independent limits on form factors for LHeC.
- ▶ Recast in specific model, here: sterile neutrinos.
- ► Flavor violation proportional to $|\theta_e\theta_\alpha^*|$

Exotic Higgs decays into displaced jets at the LHeC

K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, JHEP 02 (2021), 161 [arXiv:2008.09614 [hep-ph]].

Extending the SM with a complex neutral scalar singlet S

- ► *S* can couple to and mix with the SM Higgs field.
- ▶ Physical fields: h_1 ('Higgs'), h_2 with $m_{h_2} = \mathcal{O}(10)$ GeV.
- ▶ h_2 production at LHeC: $h_1 \rightarrow 2h_2$ with small branching ratio.
- ▶ Decay rate of h_2 suppressed by mixing \Rightarrow long-lived particle

Sensitivity

- ► Consider only CC Higgs production: $e^-p \rightarrow \nu_e h_1 j$.
- ▶ $h_1 \rightarrow 2h_2 \rightarrow 4b$ with two displaced vertices.
- Analysis at the detector level.
- From events with $n_{jet} \ge 5$, reconstruct m_{h_2} , require displacement. "Delphes with displacement." https://sites.google.com/site/leftrighthep/delphes.
- Inclusive backgrounds: $e^-p \rightarrow \nu_e + n_b b + n_j j + n_\tau \tau$

Displaced Neutrino Jets at the LHeC

G. Cottin, O. Fischer, S. Mandal, M. Mitra and R. Padhan, [arXiv:2104.13578 [hep-ph]].

Leptoquark \tilde{R}_2 and longlived sterile neutrino

- ▶ Heavy neutrino N with mass $\sim GeV$; long lived particle.
- $ightharpoonup ilde{R}$ with dominant branching into qN difficult to study at LHC.
- ► Can be produced in *ep* collisions via \tilde{R} : $ep \rightarrow \tilde{R} \rightarrow jN$, with $N \rightarrow$ displaced fat jet.
- ▶ 5σ with 120 fb⁻¹ for $M_N \sim 10$ GeV and $\tilde{R}Nq$ coupling ~ 0.1 .
- Significant improvement from positron-proton scattering.

Search for Leptophilic Dark Matter at the LHeC

G. y. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann, [arXiv:2207.01656 [hep-ph]].

Leptophilic Dark Matter at the LHeC

LHeC can probe a weak scale fermion dark matter, N, for masses up to 350 GeV, through a generic Lagrangian containing an inert doublet.

$$\mathcal{L}_Y \supset y_{N\ell} \eta \overline{N} L_{\ell} + \text{h.c.}$$

If dark matter features leptonic interactions, an LHeC that features an electron beam allowing synchronous operation of *ep* with *pp* collisions at the LHC would be helpful.

Future colliders such as the FCC and the ILC are very longterm proposals, and LHeC can be seen as a very important step towards this major new facilities in terms of physics as well as technology.

Other recent articles

"Search for heavy Majorana neutrinos at electronproton colliders," [arXiv:2201.12997 [hep-ph]].

- By H. Gu and K. Wang.
- Analysis at detector level with boosted decition tree.
- Sensitivity similar to lepton-number conserving signatures,
- \Rightarrow Background free to excellent approximation.

- A. Jueid, J. Kim, S. Lee and J. Song, "Studies of nonresonant Higgs pair production at electron-proton colliders," [arXiv:2102.12507 [hep-ph]].
- K. Cheung and Z. S. Wang,
 "Physics potential of a muon-proton collider," [arXiv:2101.10476 [hep-ph]].
- G. D. Kribs, D. McKeen and N. Raj, "Breaking up the Proton: An Affair with Dark Forces," Phys. Rev. Lett. 126 (2021) no.1, 011801 [arXiv:2007.15655 [hep-ph]].
- A. Gutiérrez-Rodríguez, M. A. Hernández-Ruíz, E. Gurkanli, V. Ari and M. Köksal, "Study on the anomalous quartic $W^+W^-\gamma\gamma$ couplings of electroweak bosons in e^-p collisions at the LHeC and the FCC-he," Eur. Phys. J. C 81 (2021) no.3, 210 [arXiv:2005.11509 [hep-ph]].

Conclusions

- ► Top and BSM in electron-proton generated a lot of interest in the pheno community.
- Driving factor: complementary to pp and ee colliders.
- Opportunities for precision measurements of top physics:
 - * Single top and $t\bar{t}$ production;
 - \star top couplings to γ , Z, W, and FCNC interactions.
- Opportunities for BSM that is hidden at the LHC:
 - ⋆ Displaced vertices from long lived particles;
 - ★ Lepton flavor violation (electron-tau);
 - ⋆ Not-too-heavy scalars;
 - ★ GeV-scale bosons.