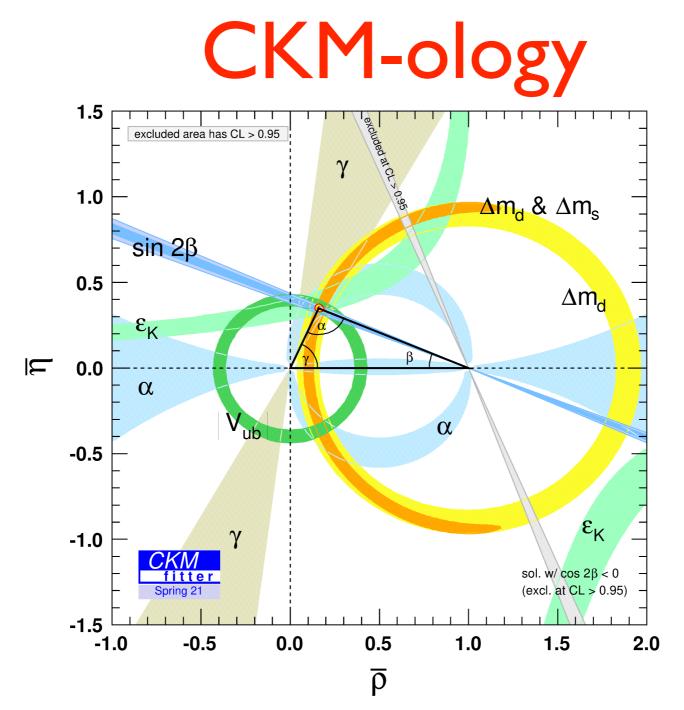
Exclusive $b \rightarrow c \ell v$ modes as windows to New Physics

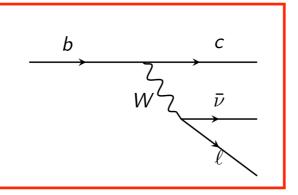
Damir Bečirević

Pôle Théorie, IJCLab CNRS et Université Paris-Saclay

based on works with F. Jaffredo, A. Le Yaouanc, and O. Sumensari

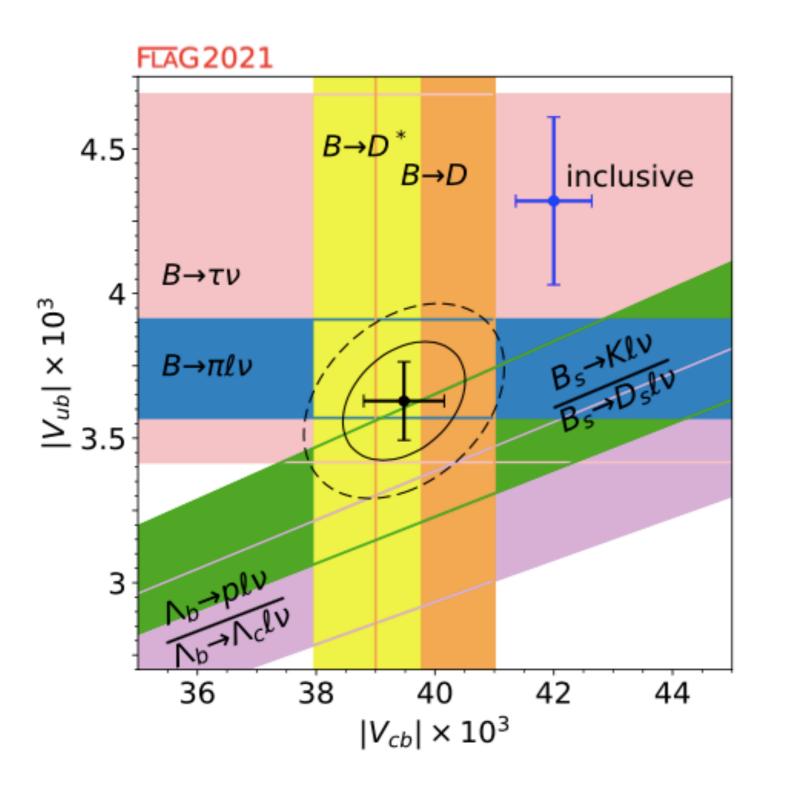


Still open: inclusive v exclusive Vub and Vcb?
 Is Vud well controlled? Vus keeps coming back (EM)...



CKM-ology - Small flavor 'anomaly'

X Still open: inclusive v exclusive V_{ub} and V_{cb}?



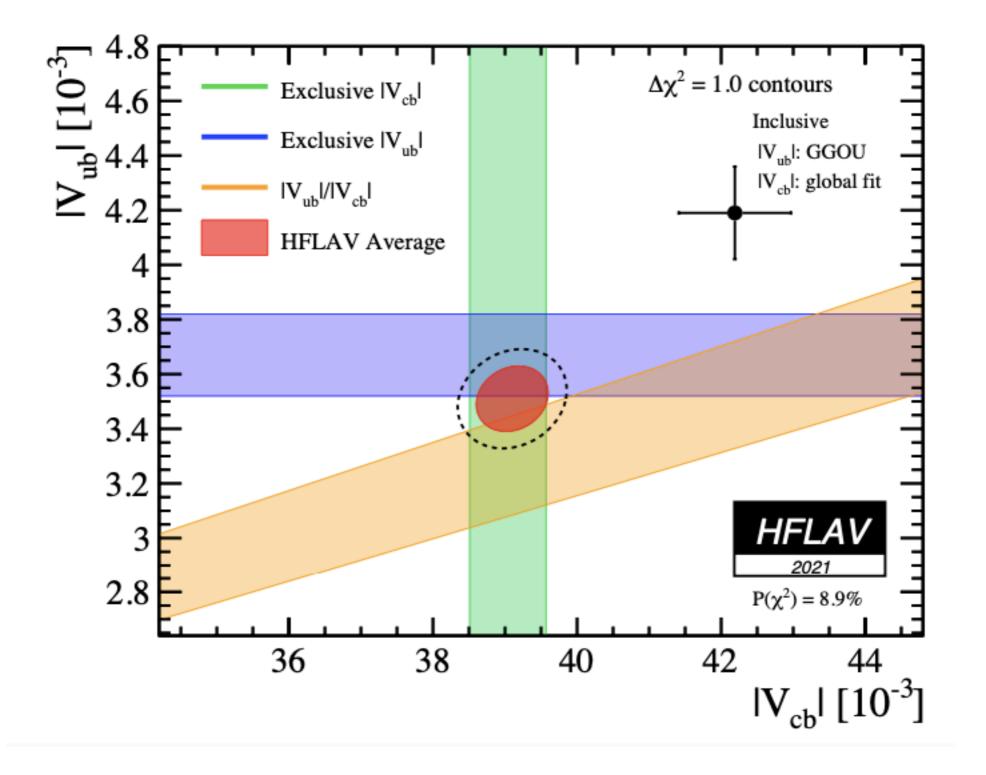
Belle II (excl + incl), LHCb (excl)

- × QCD on very fine lattices B \rightarrow D and B \rightarrow D* at w=1
- × New: $B \rightarrow D^*$ at non-zero recoil

2111.09849

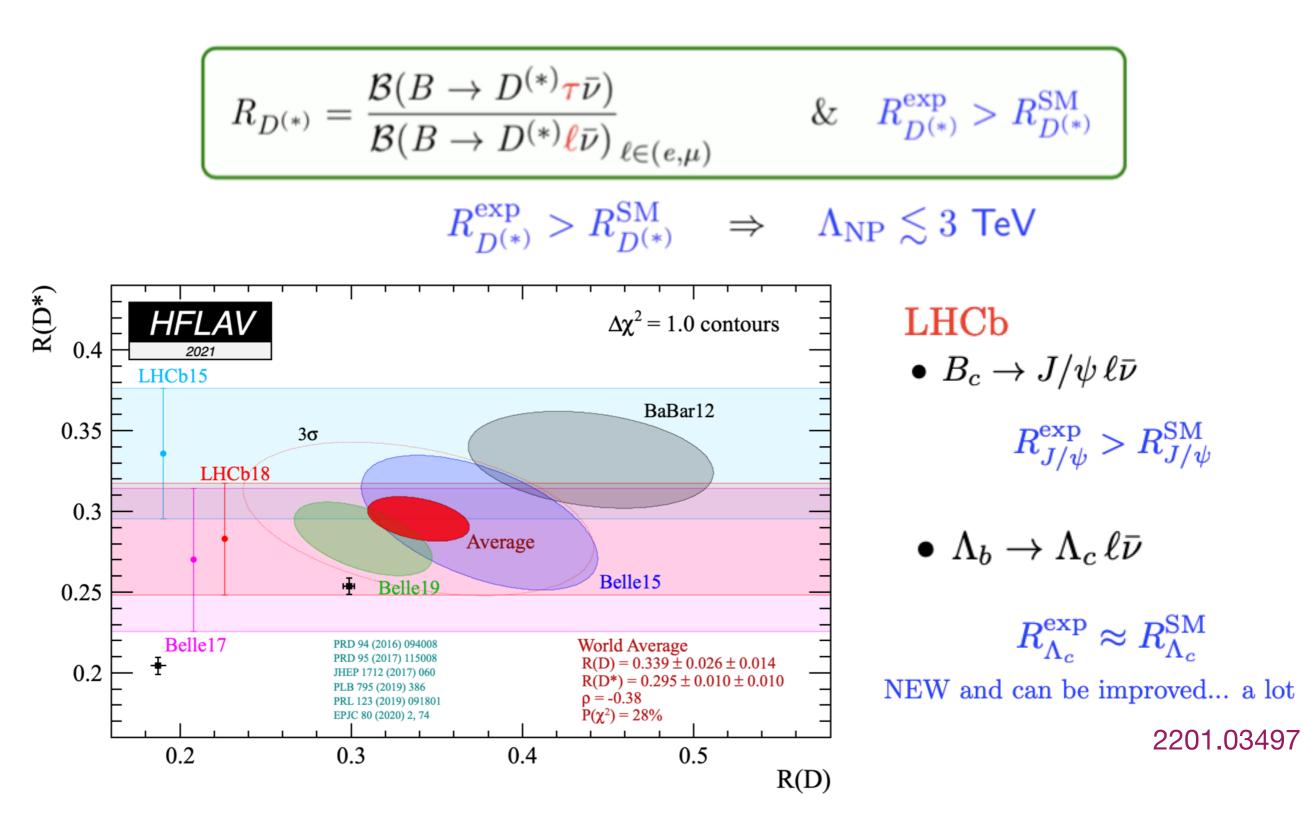
CKM-ology - Small flavor 'anomaly'

X Still open: inclusive v exclusive V_{ub} and V_{cb}?

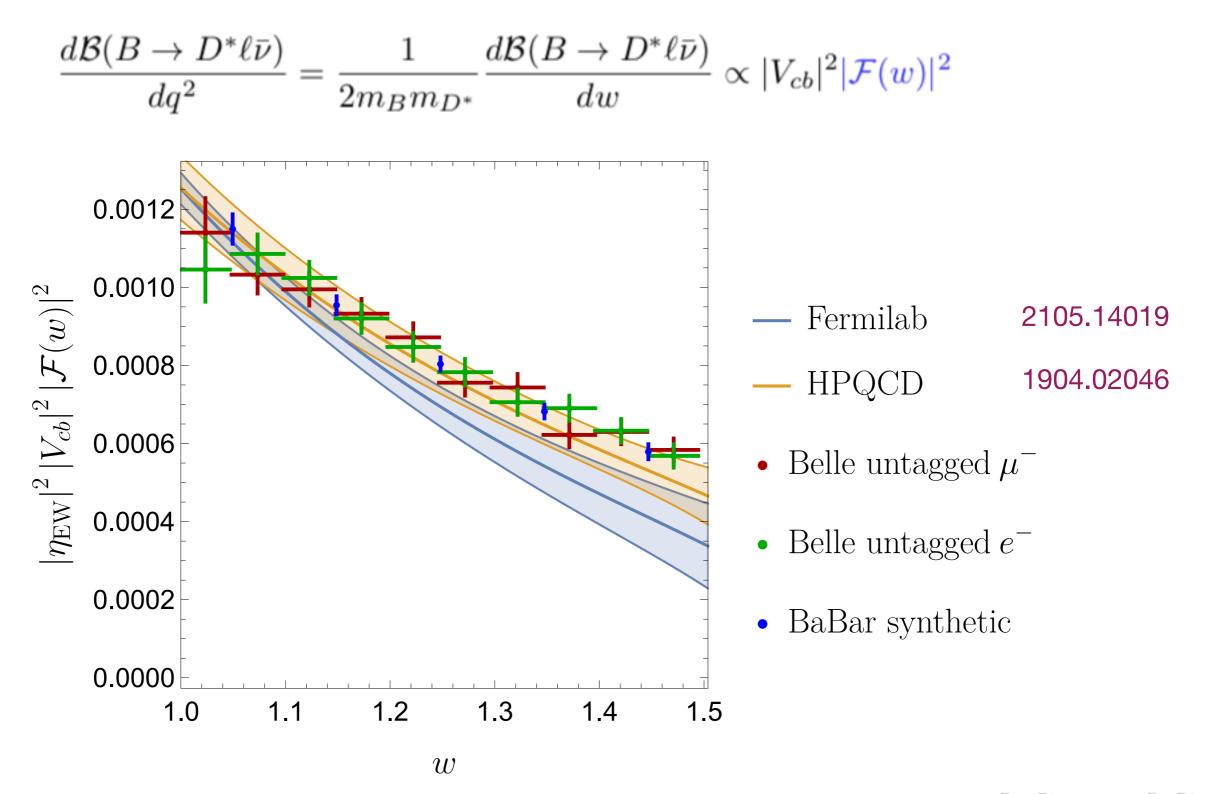


2206.07501

LFUV ['scare'] needs to study NP effects

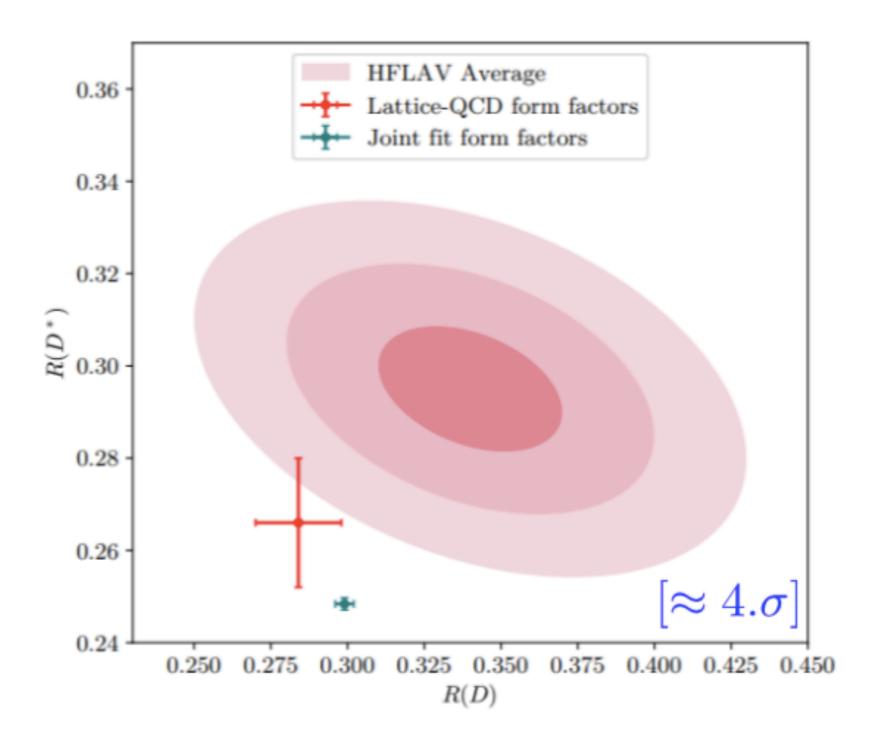


We still do not have a control over hadronic uncertainties



• Assuming with HPQCD that $\mathcal{F}(w)^{B_s \to D_s^*} = \mathcal{F}(w)^{B \to D^*}$

Warning!



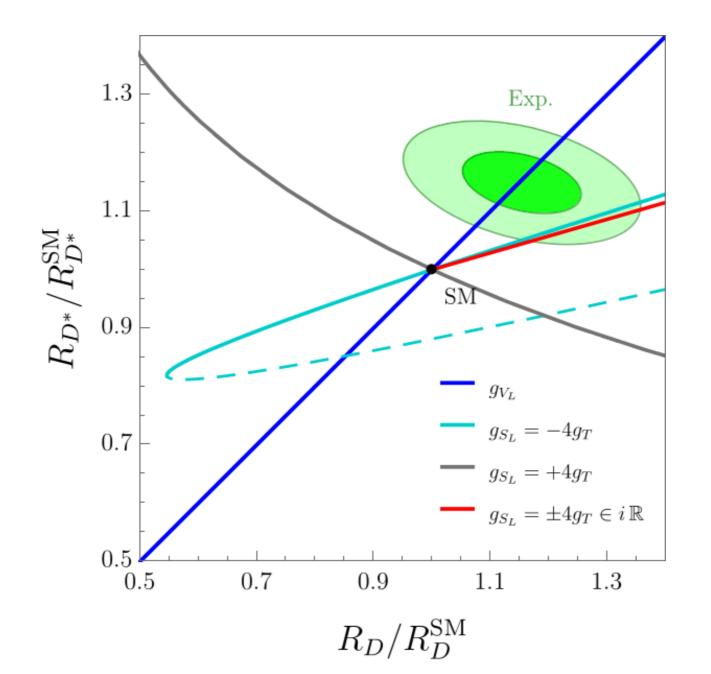
2105.14019

EFT - exclusive $b \to c \ell \nu$

 $\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L)$ $+ g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$

EFT - exclusive $b \to c \ell \nu$

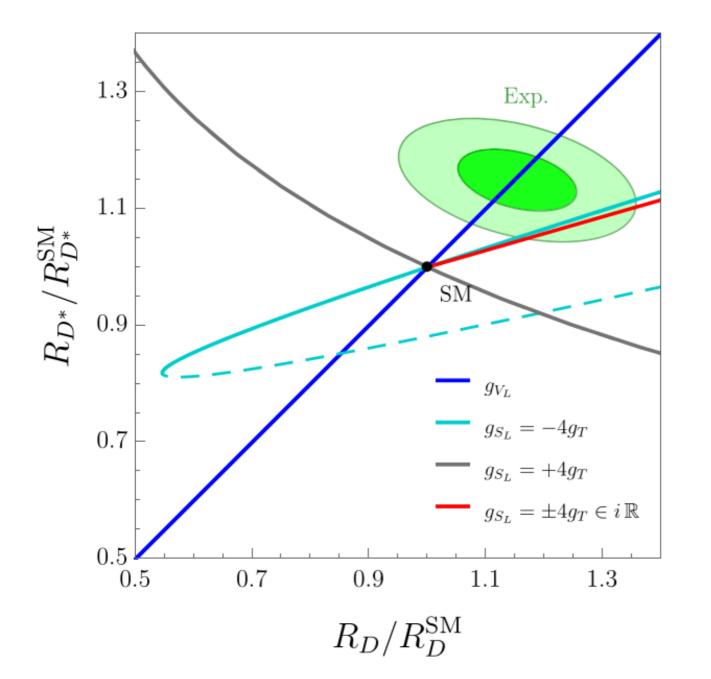
 $\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1+g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L)$ $+ g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$



2103.12504

EFT - exclusive $b \to c \ell \nu$

$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1+g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$$



Need better data and more observables to discriminate among various possibilities.

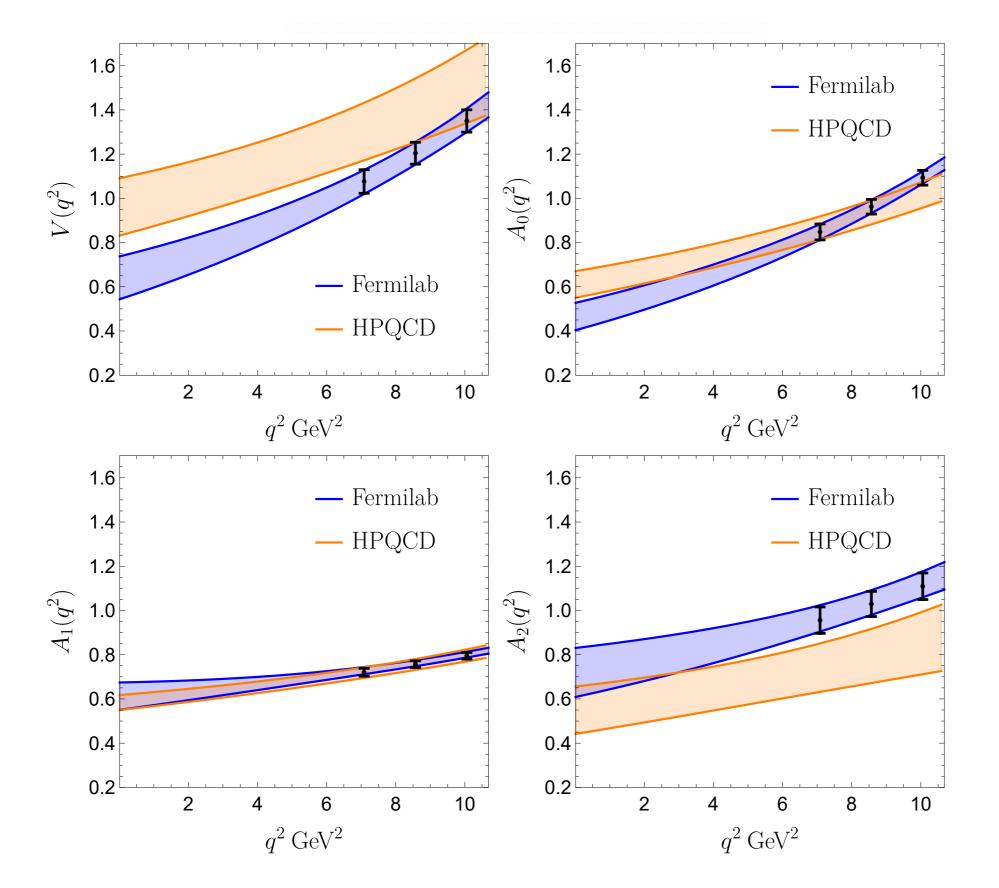
Dream goal is to confidently & simultaneously determine all NP cplgs from fit with the data.

Angular distributions can help! vast literature...

We still do not have a full control over hadronic uncertainties

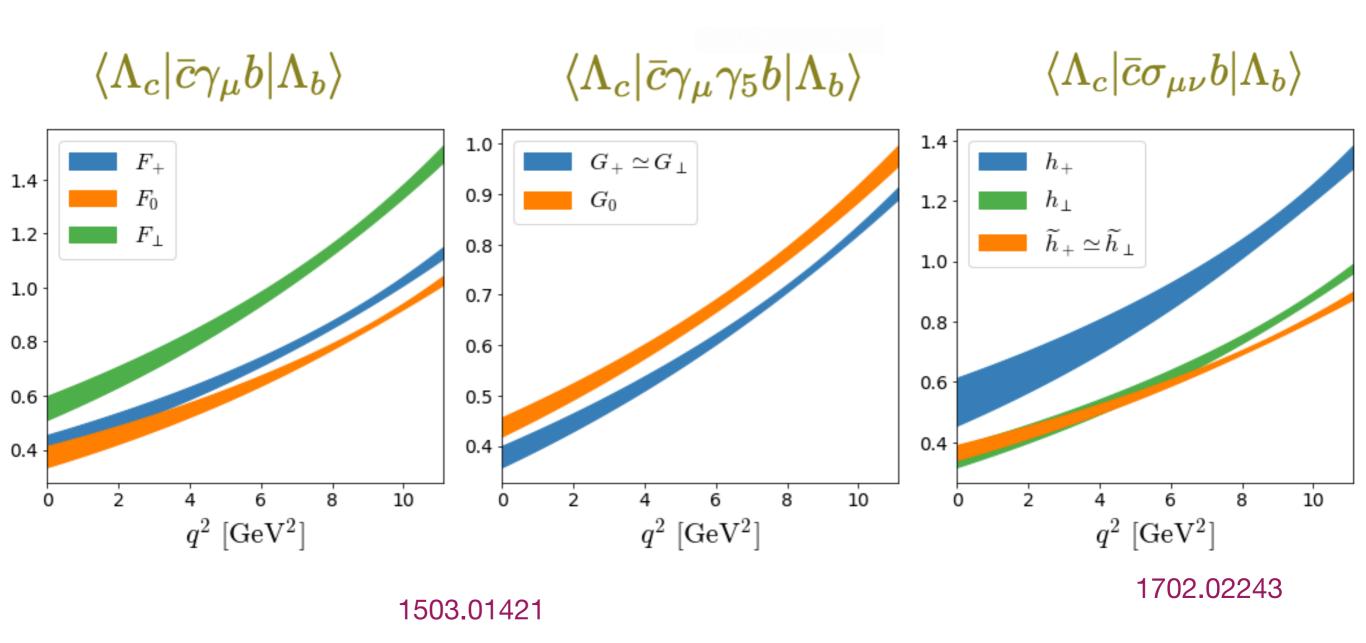
Mode	$B ightarrow D \ell \bar{ u}$	$B o D^* \ell \bar{\nu}$	$\Lambda_b o \Lambda_c \ell ar{ u}$
$\langle V_{\mu} angle$	2 🗸	1 🗸	3 🗸
$\langle A_{\mu} angle$		3 🗸	3 🗸
$\langle T_{\mu u} \rangle$	1 ×	3 ×	4 🗸
	1503.07237	1904.02046	1503.01421
	1505.03925	2105.14019	1702.02243

 $B \to D^* \ell \bar{\nu}$



1904.02046 2105.14019

 $\Lambda_b \to \Lambda_c \ell \bar{\nu}$



Keep in mind: Less than a half of available q^2 's computed on the lattice. Otherwise "z-parametrization".

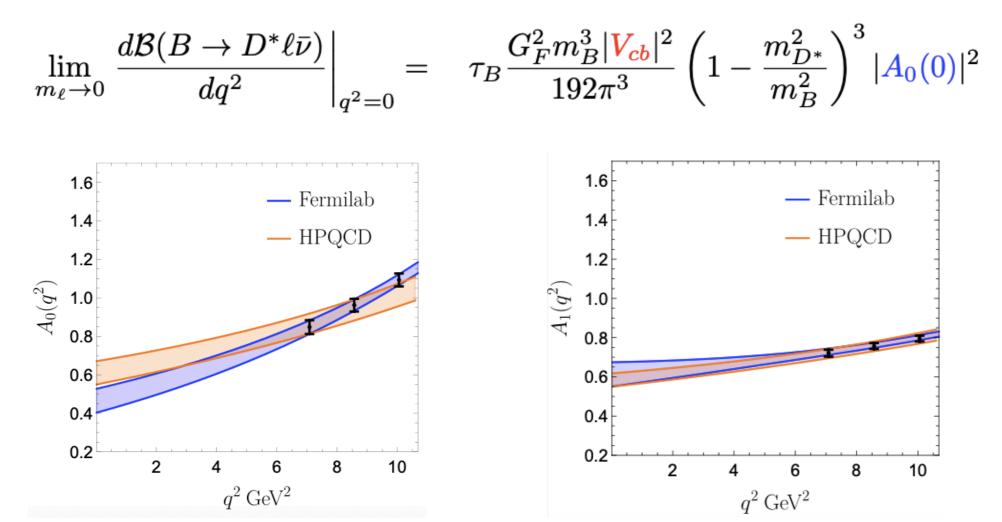
Side remark: Never ending problem IV_{cb}I

There is no canonical way/parametrization to extract $|V_{cb}|$.

Never forget that we need dynamical QCD information! Try various options - to at least cross check!

EgI. Can we measure the slowly varying scalar helicity amplitude? (!)

Eg2. Try this:



Side remark: Never ending problem |V_{cb}|

$$\lim_{m_{\ell} \to 0} \left. \frac{d\mathcal{B}(B \to D^* \ell \bar{\nu})}{dq^2} \right|_{q^2 = 0} = \tau_B \frac{G_F^2 m_B^3 |V_{cb}|^2}{192\pi^3} \left(1 - \frac{m_{D^*}^2}{m_B^2} \right)^3 |A_0(0)|^2$$

- $A_0(0) = 0.47(6)^{\text{FNAL}}, 0.61(6)^{\text{HPQCD}}, 0.78(23)^{\text{``LCSR''}}$
- Use HFLAV results with e.g. CLN: $R_2(1) = 0.853(17) \Rightarrow R_2(w_{\text{max}})$ 2206.07501

$$\frac{A_0(0)}{A_1(0)}\Big|_{\rm HFLAV}^{\rm CLN} = 1.087(14) \rightarrow A_0(0) = 0.64(4)^{\rm FNAL}, 0.66(7)^{\rm HPQCD}, 0.79(22)^{\text{``LCSR''}}$$

• Use measured $\mathcal{B}(B \to D\pi^{\pm})$ and $\mathcal{B}(B \to D^*\pi^{\pm})$ to either check whether or not $a_1^{D\pi} = a_1^{D^*\pi}$ or to extract $A_0(m_{\pi}^2)/f_0(m_{\pi}^2)$ More in the paper to come. 1904.02046

2105.14019 0809.0222

Angular observables can help disentangling among various NP scenarios

Many works with mesons: $\mathbf{B} o \mathbf{D} \ell \bar{
u}$ $\mathbf{B} o \mathbf{D}^* \ell \bar{
u}$

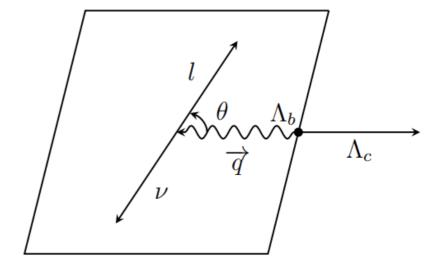
Let us now play with baryons:

$$\frac{d^2\Gamma}{dq^2d\cos\theta} = \frac{\sqrt{\lambda_{\Lambda_b\Lambda_c}\left(q^2\right)}}{1024\pi^3 M_{\Lambda_b}^3} \left(1 - \frac{m_l^2}{q^2}\right) \sum_{\lambda_l\lambda_b\lambda_c} \left|\mathcal{M}_{\lambda_c}^{(3)\lambda_b\lambda_l}\right|^2$$

$$\frac{\mathrm{d}^2\Gamma(\Lambda_b \to \Lambda_c^{\lambda_c} \ell^{\lambda_l} \nu)}{\mathrm{d}q^2 \mathrm{d}\cos\theta} = \frac{a_{\lambda_c}^{\lambda_l}(q^2) + b_{\lambda_c}^{\lambda_l}(q^2) \cos\theta + c_{\lambda_c}^{\lambda_l}(q^2) \cos^2\theta}{\mathrm{d}q^2 \mathrm{d}\cos\theta}$$

Each $a_{\lambda_c}^{\lambda_l}(q^2)$, $b_{\lambda_c}^{\lambda_l}(q^2)$, $c_{\lambda_c}^{\lambda_l}(q^2)$ is a function of kinematics, form factors and the NP couplings g_{V_L} , g_{S_L} , g_{S_R} , g_T .

12-2=10 observables



1907.12554 1908.02328 1909.10769 1702.02243 1502.04864

Three powerful observables:

$$\circ \quad \mathcal{A}_{\rm fb}(q^2) = \frac{1}{\Gamma} \left[\int_0^1 - \int_{-1}^0 \right] \frac{d\Gamma}{d\cos\theta} d\cos\theta$$

$$\circ \quad \mathcal{A}_{\pi/3}(q^2) = \frac{1}{\Gamma} \left[\int_0^{\pi/3} + \int_{2\pi/3}^{\pi} - \int_{\pi/3}^{2\pi/3} \right] \frac{d\Gamma}{d\cos\theta} \sin\theta \, d\theta$$

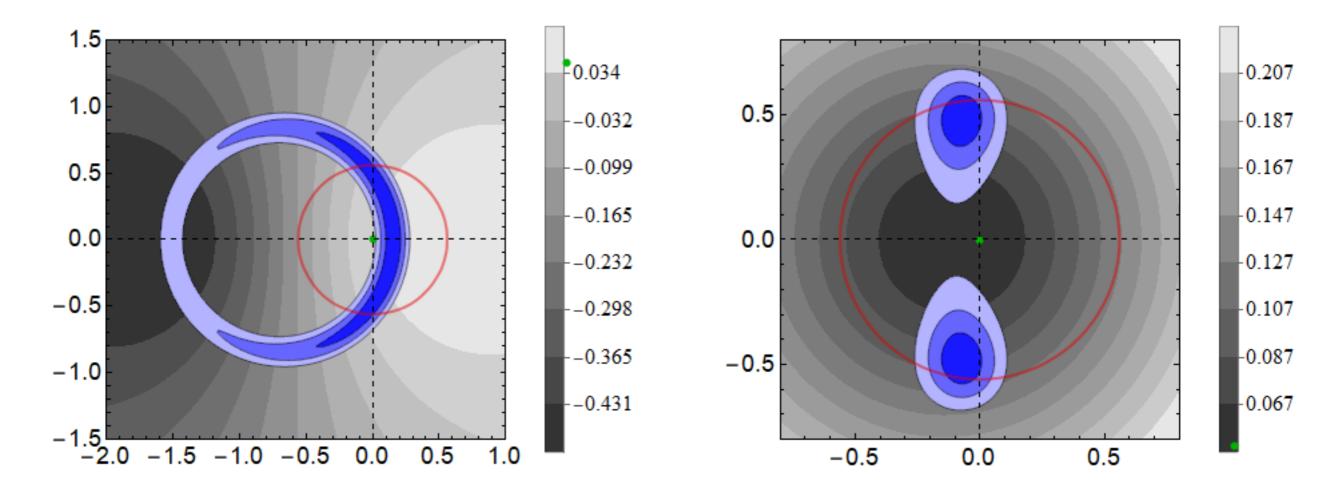
$$\circ \quad \mathcal{A}_{\lambda}(q^{2}) = \frac{1}{\Gamma} \left[\frac{d\Gamma^{+}}{dq^{2}} - \frac{d\Gamma^{-}}{dq^{2}} \right]$$

Examples:

 $U_1: g_{V_L}$ $R_2: g_{S_L} = 4 g_T$ $S_1: g_{S_L} = -4 g_T$

Three powerful observables:

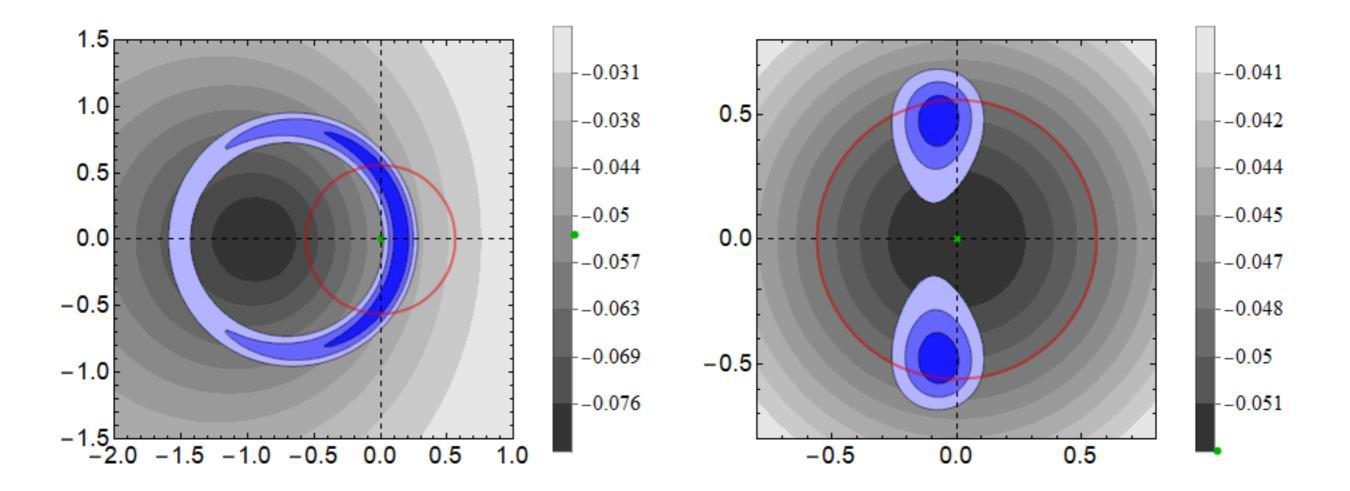
 $\langle \mathcal{A}_{\mathrm{fb}}^{ au}
angle$



 S_1

Three powerful observables:

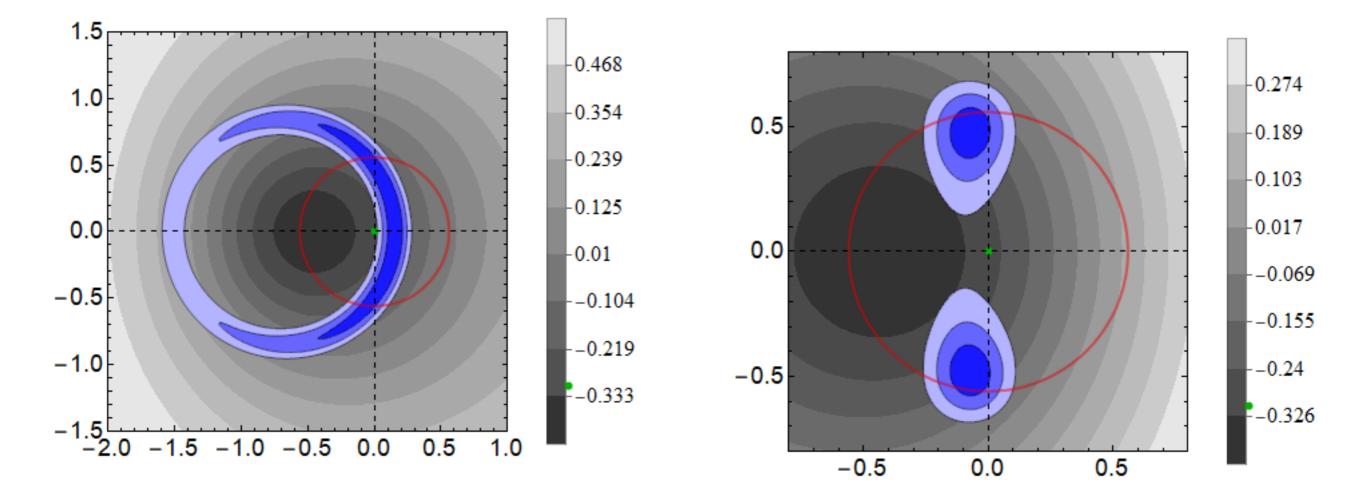
 $\langle \mathcal{A}_{\pi/3}^{ au}
angle$:



 S_1

Three powerful observables:

 $\langle \mathcal{A}_{\lambda}^{ au}
angle$

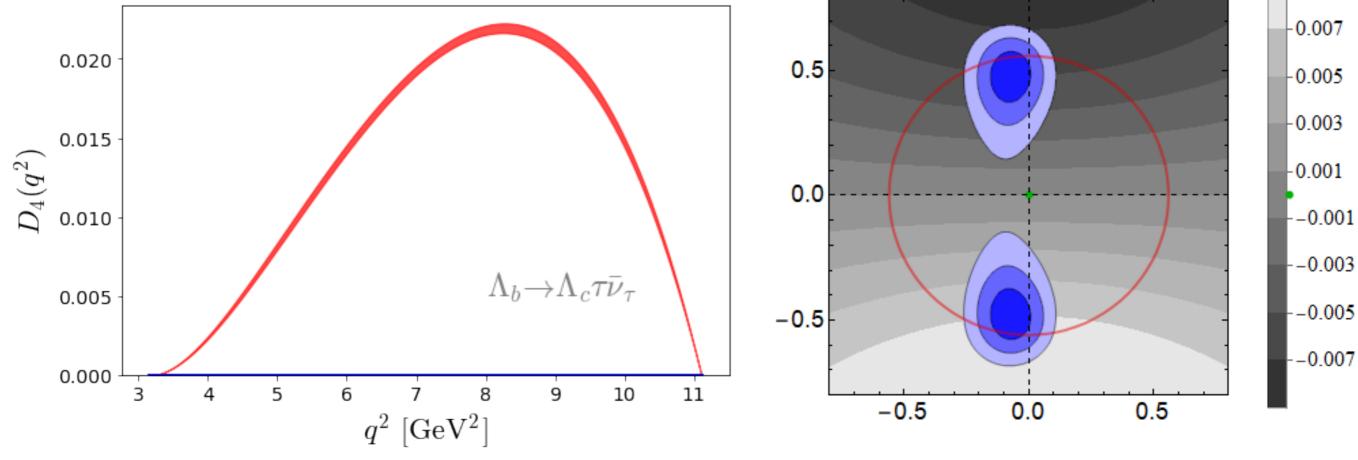


 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$

NB: $\mathcal{B}(\Lambda_c \to \Lambda \pi) = 1.30(7)\%$ or $\mathcal{B}(\Lambda_c \to pK_S) = 1.59(8)\%$

Many more angular observables and checking on $Im[g_x] \neq 0$

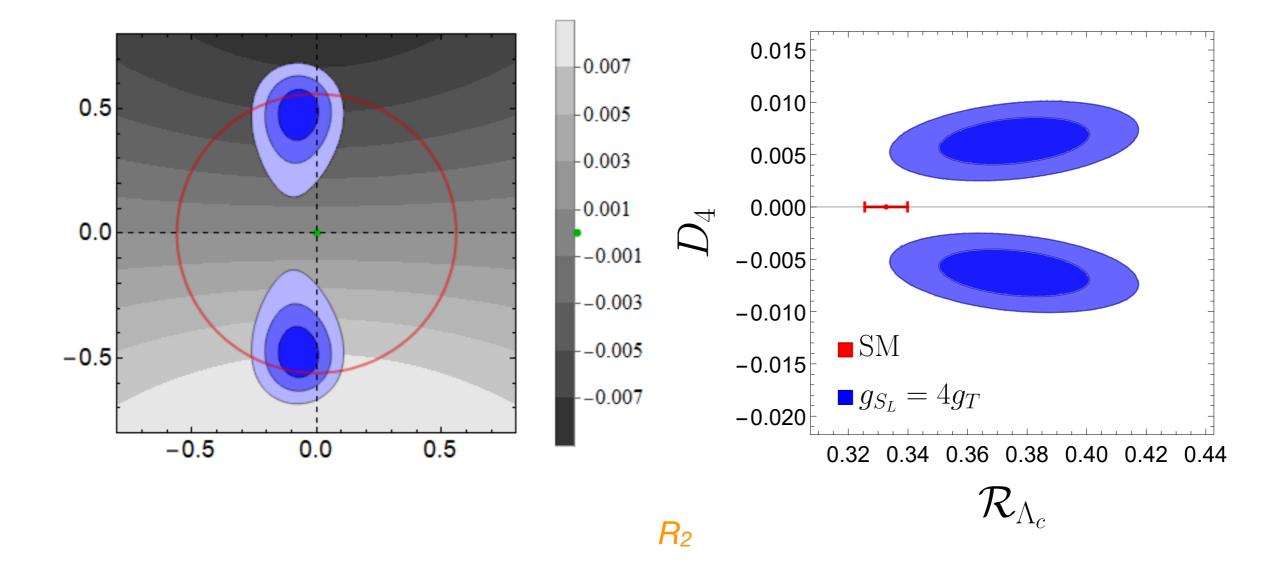
0.5



 $\Lambda_b \longrightarrow \Lambda_c (\to \Lambda \pi) \ell \nu$

Many more angular observables and checking on $\text{Im}[g_X] \neq 0$

 $\langle D_4^{\tau} \rangle$



- Hadronic uncertainties are with us and one should always keep in mind that nonperturbative QCD is <u>not</u> solved.
- Results from various models and SR suffer from systematics that is often next-to-impossible to estimate [reliably].
- LQCD is the only good way to go but the situation is still unsatisfactory for a reliable fit with data to extract $|V_{cb}|$ and NP parameters.
- Exclusive V_{cb} should be checked on in several possible ways. Sanity check that can be helpful for testing other ideas.
- R_D and R_{D^*} are too few observables to understand the source of LFUV. Too many NP solutions exist and could be filtered by angular $B \rightarrow D^{(*)} \tau v$ and $\Lambda_b \rightarrow \Lambda_c \tau v$ observables.
- All of the $\Lambda_b \rightarrow \Lambda_c \ell v$ form factors are known from LQCD in SM and BSM. LHCb showed it possible to measure $B(\Lambda_b \rightarrow \Lambda_c \tau v)$. Can we hope to see an [partial] angular analysis?
- There are 38 observables that can be extracted from Λ_b→ Λ_c (→ Λπ)τν.
 Even a small subset would be very helpful to discriminate among various scenarios.
- There are observables allowing to check whether or not there is a nonzero NP phase!