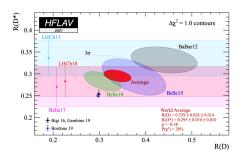
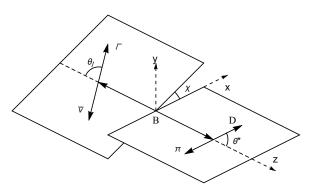


A Monte Carlo Event Generator For New Physics in $B \to D^* \ell \nu$ decays

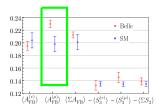
Lopamudra Mukherjee


University of Mississippi, USA

Talk Based on: **2203.07189, 2206.11283 [hep-ph]**In Collaboration with *B.Bhattacharya, T.Browder, Q.Campagna, A.Datta, S.Dubey & A.Sibidanov*

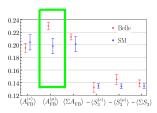

Flavour Changing Charged Current B-decay

- Semileptonic decays are theoretically clean: Leptonic current is decoupled from the hadronic current.
- ② Here, we focus on $B \to D^* \ell \nu$ because :
 - Useful in the extraction of $|V_{cb}|$ (See talks by *Taichiro Koga*).
 - Testing CKM unitarity.
 - Sensitive probes of New Physics.
 - Test Lepton Flavour Universality of the SM.
 - Persistent hints of NP in τ modes ($R_{D^{(*)}}$ etc.) and now in μ -modes.


See talks by Resmi Puthumanaillam, Manuel Naviglio, Yunxuan Li

Angular Distribution in $B \to D^* \ell \nu$

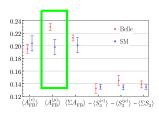
- Belle provided the first time lepton-flavour specific single-differential distribution data for each of the 4 kinematic variables Phys. Rev. D 100 (2019), 052007
- They used it to extract V_{cb} and test lepton universality ratio (μ/e) .
- The electron and muon data are in good agreement with SM.


Angular Observables

2104 02094

- Study of angular observables using the binned CP-averaged measurements of the four single-differential distributions provided by Belle done by Bobeth et. al Phys. Rev. D 100 (2019), 052007 arxiv: 2104.02094
- Observables integrated over the entire q² range.
- Reports $> 2\sigma$ anomaly in A^{μ}_{FB} and $\sim 4\sigma$ anomaly in $\Delta A_{FB} = A^{\mu}_{FB} A^{e}_{FB}$.

Angular Observables



2104.02094

- Study of angular observables using the binned CP-averaged measurements of the four single-differential distributions provided by Belle done by Bobeth et. al Phys. Rev. D 100 (2019), 052007 arxiv: 2104.02094
- Observables integrated over the entire q² range.
- Reports > 2σ anomaly in A_{FB}^{μ} and $\sim 4\sigma$ anomaly in $\Delta A_{FB} = A_{FB}^{\mu} A_{FB}^{e}$.

Are these angular observables really clean?

Angular Observables

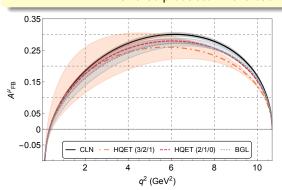
2104.02094

- Study of angular observables using the binned CP-averaged measurements of the four single-differential distributions provided by Belle done by Bobeth et. al Phys. Rev. D 100 (2019), 052007 arxiv: 2104 02094
- Observables integrated over the entire q² range.
- Reports > 2σ anomaly in A_{FB}^{μ} and $\sim 4\sigma$ anomaly in $\Delta A_{FB} = A_{FB}^{\mu} A_{FB}^{e}$.

Are these angular observables really clean?

Is it possible to study the distribution of angular observables as function of q^2 ? - Future physics goals at Belle II/LHCb upgrade

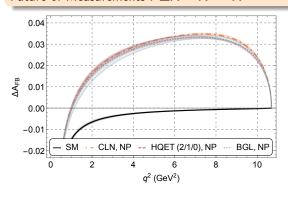
Forward-backward Asymmetry


$$\frac{\mathit{d}^2\Gamma}{\mathit{d}q^2\mathit{d}\cos\theta_\ell} = \frac{\mathit{d}\Gamma}{\mathit{d}q^2}\left(\frac{1}{2} + \frac{\mathit{A}_{\mathit{FB}}}{\mathit{A}_{\mathit{FB}}}\cos\theta_\ell + \frac{1-3\,\tilde{F}_L^\ell}{4}\,\frac{3\,\cos^2\theta_\ell - 1}{2}\right)$$

Measure of the no. of fermions produced in the forward region of the detector vs. that produced in the backward region.

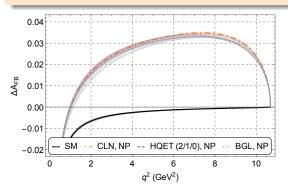
Forward-backward Asymmetry

$$\frac{d^2\Gamma}{dq^2d\cos\theta_\ell} = \frac{d\Gamma}{dq^2}\left(\frac{1}{2} + \frac{A_{FB}}{A_{FB}}\cos\theta_\ell + \frac{1-3\,\tilde{F}_L^\ell}{4}\,\frac{3\,\cos^2\theta_\ell - 1}{2}\right)$$


Measure of the no. of fermions produced in the forward region of the detector vs. that produced in the backward region.

- Difficult to disentangle NP from SM due to heavy dependence on form factors.
- We instead consider Δ-observables with potential sensitivity to NP.

△ Angular Observables


Future of Measurements : $\Delta X = X^{\mu} - X^{e}$

- In case of SM, there is an almost exact cancellation of the hadronic uncertainties.
- $\Delta A_{FB}^{SM} \approx 0$ except at threshold where $A_{FB}^{\ell} \rightarrow -1$.
- Deviation from SM due to potential NP can be reliably extracted.

△ Angular Observables

Future of Measurements : $\Delta X = X^{\mu} - X^{e}$

- In case of SM, there is an almost exact cancellation of the hadronic uncertainties.
- $\Delta A_{FB}^{SM} \approx 0$ except at threshold where $A_{FB}^{\ell} \rightarrow -1$.
- Deviation from SM due to potential NP can be reliably extracted.

What kinds of NP would provide potential signals in experiments?

MC for NP in $b \to c\ell\bar{\nu}$ decays

To answer this question we now have a new Monte-Carlo based on Evtgen: https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model

MC for NP in $b \to c\ell\bar{\nu}$ decays

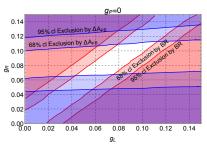
To answer this question we now have a new Monte-Carlo based on Evtgen: https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model

$$\begin{split} \mathcal{H}_{\textit{eff}} &= \frac{G_{\textit{F}} \textit{V}_{\textit{cb}}}{\sqrt{2}} \qquad \left\{ (1 + \textit{g}_{\textit{L}}) \left[\bar{c} \gamma_{\mu} (1 - \gamma_{5}) b \right] \left[\bar{\ell} \gamma^{\mu} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \\ & \left. + \textit{g}_{\textit{R}} \left[\bar{c} \gamma_{\mu} (1 + \gamma_{5}) b \right] \left[\bar{\ell} \gamma^{\mu} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \\ & \left. + \textit{g}_{\textit{S}} \left[\bar{c} b \right] \left[\bar{\ell} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \\ & \left. + \textit{g}_{\textit{P}} \left[\bar{c} \gamma_{5} b \right] \left[\bar{\ell} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \\ & \left. + \textit{g}_{\textit{T}} \left[\bar{c} \sigma^{\mu\nu} (1 - \gamma_{5}) b \right] \left[\bar{\ell} \sigma_{\mu\nu} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \right\} + \textit{h.c.} \end{split}$$

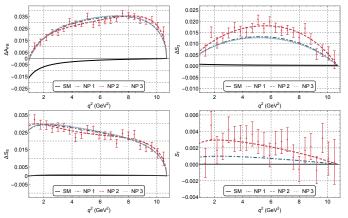
MC for NP in $b \to c\ell\bar{\nu}$ decays

To answer this question we now have a new Monte-Carlo based on Evtgen: https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model

$$\begin{split} \mathcal{H}_{\textit{eff}} &= \frac{G_{\textit{F}} \textit{V}_{\textit{cb}}}{\sqrt{2}} \qquad \left\{ (1 + \textit{g}_{\textit{L}}) \left[\bar{c} \gamma_{\mu} (1 - \gamma_{5}) \textit{b} \right] \left[\bar{\ell} \gamma^{\mu} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \\ & \left. + \textit{g}_{\textit{R}} \left[\bar{c} \gamma_{\mu} (1 + \gamma_{5}) \textit{b} \right] \left[\bar{\ell} \gamma^{\mu} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \\ & \left. + \textit{g}_{\textit{S}} \left[\bar{c} \textit{b} \right] \left[\bar{\ell} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \\ & \left. + \textit{g}_{\textit{F}} \left[\bar{c} \gamma_{5} \textit{b} \right] \left[\bar{\ell} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \\ & \left. + \textit{g}_{\textit{T}} \left[\bar{c} \sigma^{\mu\nu} (1 - \gamma_{5}) \textit{b} \right] \left[\bar{\ell} \sigma_{\mu\nu} (1 - \gamma_{5}) \nu_{\ell} \right] \right. \right\} + \textit{h.c.} \end{split}$$


Caveats:

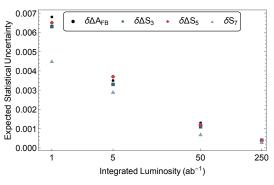
- Neutrinos are always left-handed.
- 2 The scalar matrix element $\langle D^*|\bar{c}b|\bar{B}\rangle=0$
- **3** SM case : $g_L = g_R = g_P = g_T = 0$
- Hadronic matrix elements are expressed in terms of form factors which are non-perturbative objects (cannot be calculated form first principles of QCD).


New Physics Analysis

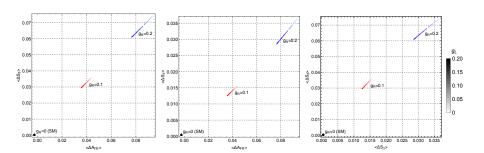
- We pick out a few NP scenarios as listed below.
- The choice is motivated such that :
 - the ratio of semi-leptonic branching fractions is constrained to be within 3% of unity.
 - they are able to explain the "experimental" $\langle \Delta A_{FB} \rangle$: 0.0349 \pm 0.0089.
 - they also satisfy constraints on other angular observables such as $\langle \Delta F_L \rangle^{exp} = -0.0065 \pm 0.0059$ and $\langle \Delta \tilde{F}_L \rangle^{exp} = -0.0107 \pm 0.0142$.

	gL	gr	ØР
Scenario 1:	0.06	0.075	0.2 i
Scenario 2:	0.08	0.090	0.6 i
Scenario 3:	0.07	0.075	0

Distributions of Angular Asymmetries


MC shown for 50 ab^{-1} data set in q^2 bins of 0.4 GeV^2

 True CP violating observable S₇ in presence of complex new physics.


Theoretical Predictions & Belle II Sensitivities

	$\langle \Delta A_{FB} \rangle$	$\langle \Delta S_3 \rangle$	$\langle \Delta S_5 \rangle$	$\langle S_7 \rangle$
	%	%	%	$\times 10^{-3}$
SM:	-0.252 ± 0.004	0.0441 ± 0.0007	0.0286 ± 0.0013	0
NP 1:	$2.89 {\pm} 0.05$	1.08 ± 0.04	$2.44^{+0.02}_{-0.03}$	$0.7 {\pm} 0.01$
NP 2:	$2.89^{+0.05}_{-0.06}$	$1.49^{+0.05}_{-0.04}$	$2.43^{+0.02}_{-0.03}$	2.0 ± 0.1
NP 3:	$2.94^{+0.04}_{-0.05}$	1.04±0.04	$2.47^{+0.03}_{-0.02}$	0

- Here we use Belle fiducial cuts :
 - $p_T^{\mu,e} > 0.8 \text{ GeV}$
 - $p_T^\pi > 0.1 \; \text{GeV}$
 - Angular acceptance of all final state particles : $-0.866 < \cos \theta < 0.956$
- Note that we use the same p_T cut for electron and muon since we did not include detector efficiencies for the leptons separately.

Correlated Angular Asymmetries

- If there is NP, then one will observe signals in other angular asymmetries, not just in ΔA_{FB} .
- If experiments measure ΔA_{FB} in future without observing a ΔS_5 (say), then the signature does not indicate new physics.
- The right-handed coupling mainly drives correlation in absence of tensor NP.

Summary & Outlook

- Distributions of angular asymmetries in $B \to D^* \ell \nu$ are interesting and important.
- We expect angular asymmetries to provide tighter constraints on NP LFU couplings.
- We propose Δ -observables to be the future of experimental measurements for this mode.
- We now have a MC generator for NP studies in such decays.
- We have pointed out possible NP scenarios that can generate $\Delta A_{FB}\sim 3\%$ and can be extracted by experiments.
- A lot can be achieved at and beyond the 50 ab⁻¹ of Belle II and other hadron colliders.

Summary & Outlook

- Distributions of angular asymmetries in $B \to D^* \ell \nu$ are interesting and important.
- We expect angular asymmetries to provide tighter constraints on NP LFU couplings.
- We propose Δ -observables to be the future of experimental measurements for this mode.
- We now have a MC generator for NP studies in such decays.
- We have pointed out possible NP scenarios that can generate $\Delta A_{FB}\sim 3\%$ and can be extracted by experiments.
- A lot can be achieved at and beyond the 50 ab⁻¹ of Belle II and other hadron colliders.

THANK YOU!