Constraints on leptoquarks from charged-lepton-flavour-violating τ processes

Kevin Monsálvez-Pozo

IFIC, Universitat de València-CSIC

(Collaboration with Tomáš Husek and Jorge Portolés) Based on the published work [Husek et al., 2022]

Preceding project

Preceding project

Use of the SMEFT up to D-6 operators to analyse τ -involved processes [Husek et al., 2021]

• Hadronic τ decays:

$$\begin{split} \tau &\rightarrow \ell P: \qquad P = \pi^{0}, K^{0}, \bar{K}^{0}, \eta, \eta' \\ \tau &\rightarrow \ell PP: \qquad PP = \pi^{+}\pi^{-}, K^{0}\bar{K}^{0}, K^{+}K^{-}, \pi^{+}K^{-}, K^{+}\pi^{-} \qquad (\ell = e, \mu) \\ \tau &\rightarrow \ell V: \qquad V = \rho^{0}, \phi, \omega, K^{*0}, \bar{K}^{*0} \end{split}$$

• $\ell - \tau$ conversion in nuclei:

$$\ell \ \mathcal{N}(A,Z) \longrightarrow \tau \ X \qquad (\ell = e,\mu)$$

Current experimental knowledge on τ -involved processes

- Existing limits on hadronic τ decays
 - Belle and BaBar collaborations [Amhis et al., 2017]
- Experimental prospects
 - Belle II ightarrow improve limits for hadronic au decays by at least one order of magnitude
 - NA64 experiment at CERN \rightarrow expected sensitivity on $\ell \tau$ conversion in nuclei $R_{\ell\tau} = \frac{\sigma(\ell + N \to \tau + X)}{\sigma(\ell + N \to \ell + X)} \sim 10^{-12} - 10^{-13}, \quad \ell = e, \mu$

Global numerical analysis — implemented with HEPfit [De Blas et al., 2020] — of these processes based on the experimental limits from Belle, Belle II and tentatively NA64

$$\mathscr{L}_{SM} = \mathscr{L}_{SM}^{(4)} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} \mathcal{O}_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} \mathcal{O}_{k}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{3}}\right) \quad [\text{Grzadkowski et al., 2010}]$$

CLFV operators ($\Lambda = \Lambda_{CLFV}$) relevant for our analysis [Husek et al., 2021]:

$\Lambda^2 \times {\rm Coupling}$	Operator	$\Lambda^2 imes$ Coupling	Operator
$C_{IQ}^{(1)}$	$(\bar{L}_p \gamma_\mu L_r) (\bar{Q}_s \gamma^\mu Q_t)$	$C_{LeQu}^{(1)}$	$\left(\bar{L}_{p}^{j}e_{r}\right)\varepsilon_{jk}\left(\bar{Q}_{s}^{k}u_{t}\right)$
$c_{LQ}^{(3)}$	$\left(\bar{L}_{p}\gamma_{\mu}\sigma^{\prime}L_{r}\right)\left(\bar{Q}_{s}\gamma^{\mu}\sigma^{\prime}Q_{t}\right)$	C ⁽³⁾ LeQu	$\left(\bar{L}_{p}^{j}\sigma_{\mu\nu}e_{r}\right)\varepsilon_{jk}\left(\bar{Q}_{s}^{k}\sigma^{\mu\nu}u_{t}\right)$
Ceu	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	C _{eφ}	$\left(\varphi^{\dagger}\varphi\right)\left(\bar{L}_{p}e_{r}\varphi\right)$
C _{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$C_{\varphi e}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)\left(\mathbf{e}_{p}\gamma^{\mu}\mathbf{e}_{r}\right)$
C _{Lu}	$(\bar{L}_p \gamma_\mu L_r) (\bar{u}_s \gamma^\mu u_t)$	$C_{\varphi L}^{(1)}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)\left(\overline{L}_{p}\gamma^{\mu}L_{r}\right)$
C _{Ld}	$(\bar{L}_p \gamma_\mu L_r) (\bar{d}_s \gamma^\mu d_t)$	$C_{\varphi L}^{(3)}$	$\left(\varphi^{\dagger}i\stackrel{\leftrightarrow}{D}_{I\mu}\varphi\right)\left(\bar{L}_{p}\sigma_{I}\gamma^{\mu}L_{r}\right)$
C _{Qe}	$(\bar{Q}_p \gamma_\mu Q_r) (\bar{e}_s \gamma^\mu e_t)$	C _{eW}	$(\bar{L}_{p}\sigma^{\mu\nu}e_{r})\sigma_{I}\varphi W^{I}_{\mu\nu}$
C _{LedQ}	$\left(\bar{L}_{p}^{j}e_{r}\right)\left(\bar{d}_{s}Q_{t}^{j}\right)$	C _{eB}	$(\bar{L}_{p}\sigma^{\mu u}e_{r})\varphi_{B\mu u}$

Two scenarios

- Quark-flavour diagonal WCs: no FCNC in the quark sector
- **(**) Equal entries for the full 3×3 quark-flavour WC matrix: FCNC in the quark sector (quark currents like $\bar{c}u$, $\bar{b}s$...) is allowed. $\Lambda_{CLFV} = \Lambda_{FCNC}$

Most stringent bound found for

$$\mathcal{O}_{\gamma} \equiv c_W \mathcal{O}_{eB} - s_W \mathcal{O}_{eW} \xrightarrow{C_{\gamma} \sim 1} \Lambda_{\mathsf{CLFV}}[\mathsf{TeV}] \gtrsim \begin{cases} 120 & \mathsf{Belle} \\ 330 & \mathsf{Belle} \ \mathsf{II} \end{cases}$$

.

- Belle and Belle II limits on au decays dominate the analysis
- NA64 expected sensitivity on ℓ - τ conversion in nuclei is not competitive, but could remove correlations between WCs if improvement of at least two orders of magnitude ($R_{\tau\ell} \sim 10^{-15}$)

Leptoquark Lagrangian

The most general framework: 5 scalar and 5 vectorial leptoquarks based on the representations of matter fields under the SM gauge group [Doršner et al., 2016] [Crivellin et al., 2021]

$$\mathcal{L}_{\mathsf{UV}} = \mathcal{L}_{\mathsf{SM}} + \mathcal{L}_{\mathsf{LQ-}\psi} + \mathcal{L}_{\mathsf{S}} + \mathcal{L}_{\mathsf{V}} + \mathcal{L}_{\mathsf{LQ-}H}$$

Keep only terms responsible for CLFV: LQ- ψ , γ -mediated, Z-mediated and H-mediated

 $\mathcal{L}_{\mathsf{LQ}\text{-}\psi} \supset$

LQ type	SM symmetries	Lagrangian
<i>S</i> ₃	(3, 3, 1/3)	+ $Y_{3,ij}^{\text{LL}} \bar{Q}_{l}^{\text{C}i,a} \epsilon^{ab} (\tau_k S_3^k)^{bc} L_{l}^{j,c}$ + h.c.
R_2	(3, 2, 7/6)	$-Y_{2,ij}^{RL}\bar{u}_{R}^{i}R_{2}^{a}\epsilon^{ab}L_{L}^{j,b}+Y_{2,ij}^{LR}\bar{e}_{R}^{i}R_{2}^{a\dagger}Q_{L}^{j,a}+h.c.$
\tilde{R}_2	(3 , 2 , 1/6)	$-\tilde{Y}_{2,ij}^{RL} \bar{d}_{R}^{i} \tilde{R}_{2}^{a} \epsilon^{ab} L_{L}^{j,b} + h.c.$
\tilde{S}_1	(3 , 1, 4/3)	$+\tilde{Y}_{1,ij}^{RR}\bar{d}_{R}^{C,i}\tilde{S}_{1}e_{R}^{j}+h.c.$
S_1	(3 , 1, 1/3)	$+Y_{1,ij}^{LL}\bar{Q}_{L}^{Ci,a}S_{1}\epsilon^{\mathbf{a}b}L_{L}^{j,b}+Y_{1,ij}^{RR}\bar{u}_{R}^{\mathbf{C}i}S_{1}e_{R}^{j}+h.c.$
U ₃	(3, 3, 2/3)	+ $X_{3,ij}^{LL} \bar{Q}_{L}^{j,a} \gamma^{\mu} (\tau_k U_{3,\mu}^k)^{ab} L_{L}^{j,b}$ + h.c.
V_2	(3 , 2 , 5/6)	$+X_{2,ij}^{RL}\bar{d}_{R}^{Ci}\gamma^{\mu}V_{2,\mu}^{a}\epsilon^{ab}L_{L}^{j,b}+X_{2,ij}^{LR}\bar{Q}_{L}^{Ci,a}\gamma^{\mu}V_{2,\mu}^{b}\epsilon_{R}^{j}+h.c.$
\tilde{V}_2	(3 , 2 , −1/6)	$+\tilde{X}_{2,ij}^{RL}\bar{u}_{R}^{C,i}\gamma^{\mu}\tilde{V}_{2,\mu}^{b}\epsilon^{ab}L_{L}^{j,a}+h.c.$
\tilde{U}_1	(3 , 1 , 5/3)	$+ \widetilde{X}^{\mathrm{RR}}_{1,jj} \overline{u}^{j}_{\mathrm{R}} \gamma^{\mu} \widetilde{U}_{1,\mu} e^{j}_{\mathrm{R}} + \mathrm{h.c.}$
U_1	(3, 1, 2/3)	$+ X^{\mathrm{LL}}_{1,ij} \bar{Q}^{i,a}_{\mathrm{L}} \gamma^{\mu} \mathcal{U}_{1,\mu} \mathcal{L}^{j,a}_{\mathrm{L}} + X^{\mathrm{RR}}_{1,ij} \bar{d}^{i}_{\mathrm{R}} \gamma^{\mu} \mathcal{U}_{1,\mu} e^{j}_{\mathrm{R}} + \mathrm{h.c.}$

 $\mathcal{L}_S \supset$

$$\mathcal{L}_{\mathsf{S}}^{\gamma} = \mathit{ie}\sum_{\mathsf{Scalar}\;\mathsf{LQs}} \mathit{Q}_{\mathsf{S}}\left[\left(\partial_{\mu} \mathit{S}^{\dagger}
ight) \mathit{S} - \mathit{S}^{\dagger}\left(\partial_{\mu} \mathit{S}
ight)
ight] \mathit{A}^{\mu}$$

EFT of leptoquarks

1. Matching $\mathcal{L}_{LQ-\psi}$ to 4ψ SMEFT operators

We integrate out the leptoquarks at tree level to match the 4-fermion operators of the SMEFT

- $\bullet\,$ Take the total derivative of the action resulting from $\mathcal{L}_{UV} \to EOM$ of the LQs
- M_S and M_V large ightarrow expansion in momenta ightarrow substituting rules for the LQ fields
- Insert these relations into the Lagrangian

$$\begin{split} \mathcal{L}_{S}^{\text{eff}} &\supset \frac{Y_{d,ij}^{\chi_{1}\chi_{2}}Y_{J,3}^{\chi_{3}\chi_{4}}}{M_{S}^{2}} \left(\bar{\psi}_{\chi_{1}}^{i}\psi_{\chi_{2}}^{j}\right) \left(\bar{\psi}_{\chi_{4}}^{\prime n}\psi_{\chi_{3}}^{m}\right), \\ \mathcal{L}_{V}^{\text{eff}} &\supset \frac{X_{d,ij}^{\chi_{1}\chi_{2}}X_{d,mn}^{\chi_{3}\chi_{4}}}{M_{V}^{2}} \left(\bar{\psi}_{\chi_{1}}^{i}\gamma_{\mu}\psi_{\chi_{2}}^{\prime j}\right) \left(\bar{\psi}_{\chi_{4}}^{\prime n}\gamma^{\mu}\psi_{\chi_{3}}^{m}\right). \end{split}$$

2. Flavour considerations

- Enhancement of flavour violation in the third family
- Equal entries quark-flavour WC matrix \rightarrow quark-flavour blind Yukawas

$$\mathbf{Y}_{d}^{\chi_{1}\chi_{2}} = \begin{pmatrix} y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} \\ y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} \\ y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} & y_{d}^{\chi_{1}\chi_{2}} \end{pmatrix}, \qquad y_{d}^{\chi_{1}\chi_{2}} \neq y_{d\tau}^{\chi_{1}\chi_{2}}$$

 $\Lambda_{\rm CLFV} = M_S$

 $yy = f(C_i)$

$$\begin{split} y_{3}^{\mathrm{LL}} y_{3\tau}^{\mathrm{LL}} &= C_{LQ}^{(1)} + C_{LQ}^{(3)} \,, \\ y_{2}^{\mathrm{RL}} y_{2\tau}^{\mathrm{LR}} &= -2C_{Lu} \,, \\ y_{1}^{\mathrm{RL}} y_{1\tau}^{\mathrm{LR}} &= C_{LQ}^{(1)} - 3C_{LQ}^{(3)} \,, \\ y_{1}^{\mathrm{RR}} y_{1\tau}^{\mathrm{RR}} &= 2C_{eu} \,, \\ \tilde{y}_{2}^{\mathrm{RL}} \tilde{y}_{2\tau}^{\mathrm{RL}} &= -2C_{Ld} \,, \\ y_{2\tau}^{\mathrm{RL}} y_{2\tau}^{\mathrm{LR}} &= -2C_{Ld} \,, \\ y_{2\tau}^{\mathrm{RL}} y_{2\tau}^{\mathrm{LR}} &= -C_{LeQu}^{(1)(\ell-\tau)} - 4C_{LeQu}^{(3)(\ell-\tau)} \,, \\ y_{1\tau}^{\mathrm{RL}} y_{2\tau}^{\mathrm{RR}} &= -C_{LeQu}^{(1)(\ell-\tau)} - 4C_{LeQu}^{(3)(\ell-\tau)} \,, \\ y_{1\tau}^{\mathrm{LL}} y_{1\tau}^{\mathrm{RR}} &= C_{LeQu}^{(1)(\ell-\tau)} - 4C_{LeQu}^{(3)(\ell-\tau)} \,, \\ \end{split}$$

- Pairs of Yukawas $y_{2\tau}^{RL}y_2^{LR}$ and $y_{1\tau}^{LL}y_1^{RR}$ unconstrained by τ decays $\rightarrow \ell \tau$ conversion limits considered
- 11 pairs of Yukawas and 11 effective bounds on the WCs

au decays	Upper bounds on –	$\frac{yy' }{M_{\rm S}^2}$ [10 ⁻³ TeV ⁻²]	Lower bounds on	M _S [TeV]
Yukawa pair	Belle	Belle II	Belle	Belle II
$ y_3^{LL}y_{3\tau}^{LL} $	12	1.9	9.1	23
$ y_2^{RL}y_2^{RL} $	47	5.0	4.6	14
$ y_2^{LR}y_2^{LR} $	17	2.6	7.8	20
$ y_2^{\text{RL}}y_2^{\text{LR}} $	28	3.7	6.0	16
$ \tilde{y}_2^{RL}\tilde{y}_2^{RL} , \tilde{y}_1^{RR}\tilde{y}_{1 au}^{RR} $	20	3.0	7.1	18
$ y_1^{LL}y_{1\tau}^{LL} $	64	7.7	3.9	11
$ y_1^{\text{RR}}y_1^{\text{RR}} $	34	4.1	5.4	16
$ y_1^{LL}y_1^{RR} $	28	3.7	6.0	16
$\ell - \tau$ conversion	Upper bounds on	$\frac{ yy' }{M_{\rm S}^2} [10^0 {\rm TeV}^{-2}]$	Lower bounds on	M _S [TeV]
Yukawa pair	e- $ au$	$\mu - \tau$	e- $ au$	μ - τ
$ y_{2\tau}^{RL}y_{2}^{LR} $	350	2.3	0.054	0.66
$ y_{1\tau}^{LL}y_{1}^{RR} $	250	1.8	0.063	0.75

Results: C_{γ}

To match the C_{γ} consider gauge couplings of the leptoquarks

- Vector leptoquarks
 - uncertainty on their origin \rightarrow not considered [Gonderinger and Ramsey-Musolf, 2010]
- Scalar leptoquarks
 - coupled through the covariant derivative

Leading-order contribution to C_{γ} from LQs \rightarrow one-loop computation of $\ell_1 \rightarrow \ell_2 \gamma$ process

- Integration by regions [Beneke and Smirnov, 1998] [Smirnov, 2002] [Jantzen, 2011]
- Main contribution from two leptoquarks: $R_2^{5/3}$ and S_1

$$\frac{C_{\gamma}}{\Lambda_{\mathsf{CLFV}}^2} = \frac{eN_C m_t V_{tb}}{32\sqrt{2}\pi^2 v M_5^2} (Q_{LQ} - 3Q_t) y_1 y_2 \longrightarrow \begin{cases} R_2^{5/3} : & Q_{LQ} = 5/3; \ y_1 y_2 = y_{2\tau}^{RL} y_2^{LR} \\ S_1 : & Q_{LQ} = 1/3; \ y_1 y_2 = y_{1\tau}^{LL} y_1^{RR} \end{cases}$$

$c_{\gamma}/\Lambda^2_{CLFV}$	Upper bounds on –	$\frac{V Y' }{M_S^2} [10^{-3} \text{ TeV}^{-2}]$	Lower bounds on I	M _S [TeV]
Yukawa pair	Belle	Belle II	Belle	Belle II
$ y_{2\tau}^{\text{RL}}y_{2\tau}^{\text{LR}} $	150	19	3.1	8.6
$ y_1^{LL} \gamma_1^{KK} $	21	2.7	8.2	23

Model-independent numerical analysis of SMEFT D-6 operators related to CLFV processes the au lepton

We studied 28+4 observables

- 14 different LFV τ decay channels into hadrons for each $\ell \rightarrow$ we used current Belle and expected Belle II data (strongest bounds)
- $e \tau$ and $\mu \tau$ conversion in Fe(56,26) and Pb(208,82) \rightarrow feasible at NA64
 - not competitive yet, could remove correlations between WCs if improvement of at least two orders of magnitude ($R_{\tau\ell}\sim 10^{-15}$)

We translated the bounds on the SMEFT parameters into constraints on a general leptoquark framework

Main constraints from four-fermion operators (tree-level LQ contributions)

- Strongest bound on scalar LQs: $|y_3^{LL}y_{3\tau}^{LL}| \sim 1 \longrightarrow M_S \gtrsim 23$ TeV (Belle II)
- Slightly stronger bounds on vector LQs
- \bullet Some pairs of Yukawas only bounded from $\ell-\tau$ conversion

Main bound on C_{γ} (one-loop LQ contribution) from τ decays helps improving the low-bounded pair of Yukawas

http://lhcpheno.ific.uv-csic.es/

Kevin Monsálvez-Pozo (IFIC)

Bibliography I

Amhis, Y. et al. (2017).

Averages of *b*-hadron, *c*-hadron, and τ -lepton properties as of summer 2016. *Eur. Phys. J. C*, 77(12):895.

Beneke, M. and Smirnov, V. A. (1998).

Asymptotic expansion of Feynman integrals near threshold. Nucl. Phys. B, 522:321–344.

Crivellin, A., Greub, C., Müller, D., and Saturnino, F. (2021). Scalar Leptoquarks in Leptonic Processes. *JHEP*, 02:182.

De Blas, J. et al. (2020).

HEPfit: a code for the combination of indirect and direct constraints on high energy physics models.

Eur. Phys. J. C, 80(5):456.

Doršner, I., Fajfer, S., Greljo, A., Kamenik, J. F., and Košnik, N. (2016). Physics of leptoquarks in precision experiments and at particle colliders. *Phys. Rept.*, 641:1–68.

Gonderinger, M. and Ramsey-Musolf, M. J. (2010). Electron-to-Tau Lepton Flavor Violation at the Electron-Ion Collider. *JHEP*, 11:045. [Erratum: JHEP 05, 047 (2012)].


```
Grzadkowski, B., Iskrzynski, M., Misiak, M., and Rosiek, J. (2010).
Dimension-Six Terms in the Standard Model Lagrangian.
JHEP, 10:085.
```


Husek, T., Monsálvez-Pozo, K., and Portolés, J. (2021). Lepton-flavour violation in hadronic tau decays and $\mu - \tau$ conversion in nuclei. *JHEP*, 01:059.

Husek, T., Monsalvez-Pozo, K., and Portoles, J. (2022). Constraints on leptoquarks from lepton-flavour-violating tau-lepton processes. *JHEP*, 04:165.

Jantzen, B. (2011).

Foundation and generalization of the expansion by regions. *JHEP*, 12:076.

Smirnov, V. A. (2002).

Applied asymptotic expansions in momenta and masses. Springer Tracts Mod. Phys., 177:1–262.

Correlation matrix: Belle

	$C_{LQ}^{(1)}$	$C_{LQ}^{(3)}$	C_{eu}	C_{ed}	C_{Lu}	C_{Ld}	C_{Qe}	C'_{LedQ}	$C_{LeQu}^{(1)\prime}$	$C^{(3)}_{LeQu}$	$C_{\varphi L}^{(1)}'$	$C_{\varphi e}$	C_{γ}	C_Z	$C_{e\varphi}$		1.0
$C_{LQ}^{\left(1\right)}$	+1	-0.74	+0.022	+0.056	-0.81	-0.42	+0.063	+0.035	-0.1	+0.074		-0.078	+0.13	-0.19	+0.022		1.0
$C_{LQ}^{\left(3\right)}$	-0.74	$^{+1}$	-0.001	-0.011	+0.76	+0.19	-0.08	+0.12	+0.13	-0.058	+0.84	+0.064	-0.1	+0.15	+0.1	_	0.8
C_{eu}	+0.022	-0.001	$^{+1}$	+0.27	+0.099	-0.0054	-0.57	+0.071	-0.051	+0.11	+0.056	-0.18	+0.18	+0.019	+0.063		0.6
C_{ed}	+0.056	-0.011	+0.27	$^{+1}$	-0.025	+0.015		+0.18	+0.079	+0.035	-0.029	+0.15	+0.059	-0.12	+0.16		0.0
C_{Lu}	-0.81	+0.76	+0.099	-0.025	$^{+1}$	+0.3	-0.043	+0.019	+0.14	+0.019	+0.57	+0.12	+0.041	+0.13	+0.028		0.4
C_{Ld}	-0.42	+0.19	-0.0054	+0.015	+0.3	$^{+1}$	+0.035	-0.15	-0.047	+0.031	+0.24	-0.069	+0.034	-0.099	-0.12		0.0
C_{Qe}	+0.063	-0.08			-0.043	+0.035	+1	-0.17	+0.0048	+0.041	-0.091	+0.16	+0.079	-0.12	-0.14		0.2
C_{LedQ}'	+0.035	+0.12	+0.071	+0.18	+0.019	-0.15	-0.17	$^{+1}$	+0.33	-0.02	+0.096	+0.034	-0.0005	-0.00059	+0.81	_	0.0
$C_{LeQu}^{(1)\prime}$	-0.1	+0.13	-0.051	+0.079	+0.14	-0.047	+0.0048	+0.33	+1	-0.026	+0.048	+0.12	+0.007	+0.0023	+0.33		0.0
$C_{LeQu}^{(3)}$	+0.074	-0.058	+0.11	+0.035	+0.019	+0.031	+0.041	-0.02	-0.026	$^{+1}$	-0.05	-0.017		+0.61	-0.02		-0.2
$C^{(1)\prime}_{\varphi L}{}^\prime$	-0.56	+0.84	+0.056	-0.029	+0.57	+0.24	-0.091	+0.096	+0.048	-0.05	+1	+0.11	-0.067	+0.21	+0.079		-0.4
$C_{\varphi e}$	-0.078	+0.064	-0.18	+0.15	+0.12	-0.069	+0.16	+0.034	+0.12	-0.017	+0.11	+1	+0.021	+0.18	+0.027		
C_{γ}	+0.13	-0.1	+0.18	+0.059	+0.041	+0.034	+0.079	-0.0005	+0.007		-0.067	+0.021	$^{+1}$	-0.83	+0.01		-0.6
C_Z	-0.19	+0.15	+0.019	-0.12	+0.13	-0.099	-0.12	-0.00059	+0.0023	+0.61	+0.21	+0.18	-0.83	+1	-0.0098	_	-0.8
$C_{e\varphi}$	+0.022	+0.1	+0.063	+0.16	+0.028	-0.12	-0.14	+0.81	+0.33	-0.02	+0.079	+0.027	+0.01	-0.0098	+1		-1.0
																	4.0

Bounds from CLFV τ processes translated to the leptoquark framework \rightarrow bounds on $yy'/M_{S,V}^2$

Two independent scenarios \rightarrow all scalar or vector leptoquarks at the same time

 \bullet Same energy scale for all leptoquarks within the same scenario \rightarrow equal masses

Previous 2nd scenario assumption $\Lambda_{CLFV} = \Lambda_{FCNC}$ is better motivated

Bounds mainly from four-fermion operators of the SMEFT

- Gauge boson couplings to LQs leads to constraints on the same pairs of Yukawas
- Gauge bosons contribute through loop processes \rightarrow lower sensitivity (except for the C_{γ} ; see below)

Results: vector leptoquarks

 $\Lambda_{CLFV} = m_V$

• We start with 11 pairs of Yukawas but 9 effective bounds on the WCs

- $x_{1,2}^{(\ell- au)}$ unconstrained by au decays $o \ell- au$ conversion limits considered
- 9 pairs of Yukawas and 9 effective bounds on the WCs

au decays	Upper bounds on	$\frac{ xx' }{M_V^2} \left[10^{-3} \text{TeV}^{-2} \right]$	Lower bounds or	n <i>M</i> V [TeV]
Yukawa pair	Belle	Belle II	Belle	Belle II
$ x_3^{LL}x_{3\tau}^{LL} $	15	1.7	8.2	25
$ x_2^{RL}x_{2\tau}^{RL} , x_1^{RR}x_{1\tau}^{RR} $	10	1.5	10	26
$ x_2^{LR}x_{2\tau}^{LR} $	8.3	1.3	11	28
$ \tilde{x}_2^{RL}\tilde{x}_{2 au}^{RL} $	24	2.5	6.5	20
$ x_1^{LL}x_{1 au}^{LL} $	22	3.1	6.7	18
$ ilde{x}_1^{RR} ilde{x}_{1 au}^{RR} $	17	2.1	7.7	22
$ x_{1,2}^{ au h} $	3.1	0.42	18	49
$\ell - \tau$ conversion	Upper bounds on	$rac{ xx' }{M_{ m V}^2} [10^0 { m TeV^{-2}}]$	Lower bounds or	n <i>M</i> V [TeV]
Yukawa pair	e-τ	$\mu - au$	e	$\mu - \tau$
$ x_{1,2}^{\ell- au} $	330	1.5	0.055	0.83

Vector leptoquarks interaction with the photon depend on their nature \rightarrow gauge bosons or not of a higher energy theory

• there can exist an anomalous magnetic moment coupling

$$\mathcal{L}_{V,\gamma} = -ieQ_V igg(\left[\mathcal{V}^{\dagger}_{\mu
u} V^{
u} - \mathcal{V}_{\mu
u} V^{
u\dagger}
ight] A^{\mu} - (1-\kappa) V^{\dagger}_{\mu} V_{
u} F^{\mu
u} igg)$$

- gauge boson $\rightarrow \kappa = 0$
 - three-gauge-boson vertex

If gauge boson, propagator:

$$\frac{-ig^{\mu\nu}}{k^2-m_V^2+i\epsilon}\,,$$

otherwise

$$\frac{-i}{k^2 - m_V^2 + i\epsilon} \left(g^{\mu\nu} - \frac{k^\mu k^\nu}{m_V^2} \right)$$

Second term introduces extra divergences to the loop computations of $\ell_1 \rightarrow \ell_2 \gamma$

they do not cancel as for scalar leptoquarks

If gauge boson, possible contributions to the loop from other defrees of freedom in the UV completion

LQ	$C_{LQ}^{(1), klmn}$	$C_{LQ}^{(3),klmn}$	$C_{LeQu}^{(1),klmn}$	$C_{LeQu}^{(3),klmn}$	C_{Qe}^{klmn}	C_{Lu}^{klmn}	C_{Ld}^{klmn}	C_{eu}^{klmn}	C_{ed}^{klmn}	C_{LedQ}^{klmn}
S_3	$+\frac{3}{4}Y_{3,nl}^{LL}Y_{3,mk}^{LL}$	$+rac{1}{4}Y^{ extsf{LL}}_{3,nl}Y^{ extsf{LL}}_{3,mk}$	×	×	×	×	×	×	×	×
R_2	×	×	$-rac{1}{2}Y^{\mathrm{RL}}_{2,nk}Y^{\mathrm{LR}}_{2,lm}$	$-rac{1}{8}Y^{\mathrm{RL}}_{2,nk}Y^{\mathrm{LR}}_{2,lm}$	$- \tfrac{1}{2} Y^{\mathrm{LR}}_{2,\mathit{ml}} Y^{\mathrm{LR}}_{2,\mathit{nk}}$	$-rac{1}{2}Y^{\mathrm{RL}}_{2,\mathit{ml}}Y^{\mathrm{RL}}_{2,\mathit{nk}}$	×	×	×	×
\tilde{R}_2	×	×	×	×	×	×	$-rac{1}{2} \tilde{Y}^{\mathrm{RL}}_{2,\mathit{ml}} \tilde{Y}^{\mathrm{RL}}_{2,\mathit{nk}}$	×	×	×
\tilde{S}_1	×	×	×	×	×	×	×	×	$+rac{1}{2} ilde{Y}_{1,nl}^{\mathrm{RR}} ilde{Y}_{1,mk}^{\mathrm{RR}}$	×
S_1	$+rac{1}{4}Y_{1,nl}^{ extsf{LL}}Y_{1,mk}^{ extsf{LL}}$	$- \tfrac{1}{4} Y_{1, \textit{nl}}^{\text{LL}} Y_{1, \textit{mk}}^{\text{LL}}$	$+rac{1}{2}Y_{1,\mathit{mk}}^{LL}Y_{1,\mathit{nl}}^{RR}$	$-rac{1}{8}Y_{1,\textit{mk}}^{\text{LL}}Y_{1,\textit{nl}}^{\text{RR}}$	×	×	×	$+rac{1}{2}Y_{1,\mathit{nl}}^{RR}Y_{1,\mathit{mk}}^{RR}$	×	×
U_3	$-\frac{3}{2}X_{3,ml}^{LL}X_{3,nk}^{LL}$	$+\frac{1}{2}X^{LL}_{3,ml}X^{LL}_{3,nk}$	×	×	×	×	×	×	×	×
V_2	×	×	×	×	$+X_{2,ln}^{LR}X_{2,km}^{LR}$	×	$+X_{2,nl}^{RL}X_{2,mk}^{RL}$	×	×	$-2X^{\rm RL}_{2,mk}X^{\rm LR}_{2,nl}$
\tilde{V}_2	×	×	×	×	×	$+ \tilde{X}_{2,nl}^{RL} \tilde{X}_{2,mk}^{RL}$	×	×	×	×
\tilde{U}_1	×	×	×	×	×	×	×	$-\tilde{X}^{\mathrm{RR}}_{1,ml}\tilde{X}^{\mathrm{RR}}_{1,nk}$	×	×
U_1	$-\frac{1}{2}X_{1,ml}^{LL}X_{1,nk}^{LL}$	$- \tfrac{1}{2} X_{1,\mathit{ml}}^{LL} X_{1,\mathit{nk}}^{LL}$	×	×	×	×	×	×	$-X_{1,\mathit{ml}}^{RR}X_{1,\mathit{nk}}^{RR}$	$+2X_{1,\mathit{nk}}^{LL}X_{1,\mathit{ml}}^{RR}$

Table: Results of the matching of pairs of Yukawa couplings stemming from each leptoquark type to the Wilson coefficients of the four-fermion operators of SMEFT. Notice that, owing to the Fierz rearrangement, we also obtain contributions containing tensorial operators, i.e. $C_{LeQu}^{(3)}$.

$C_\gamma/\Lambda^2_{ m CLFV}$	Upper bounds on $\frac{ y }{h}$	$\frac{y' }{M_{\rm S}^2} [10^{-3} { m TeV}^{-2}]$	Lower bounds on	<i>M</i> _S [TeV]
Yukawa pair	Belle	Belle II	Belle	Belle II
$ y_{2\tau}^{RL}y_{2\tau}^{LR} $	150	19	3.1	8.6
$ y_{1 au}^{LL}y_{1}^{RR} $	21	2.7	8.2	23
$\tau \to \ell \gamma$	Upper bounds on $\frac{ y }{\Lambda}$	$\frac{y' }{q_{\rm S}^2} [10^{-3} { m TeV^{-2}}]$	Lower bounds on	<i>M</i> _S [TeV]
Yukawa pair	$ au o e\gamma$	$\tau \to \mu \gamma$	$ au ightarrow e\gamma$	$\tau \to \mu \gamma$
$ y_{2\tau}^{RL}y_{2\tau}^{LR} $	0.66	0.79	83	75
$ y_{1 au}^{LL}y_{1}^{RR} $	1.4	1.7	71	64