Collider Probes for "4321" and Beyond

Darius A. Faroughy

"4321" gauge models in a nutshell

Di Luzio, Greljo, Nardecchia [1708.08450] Bordone, et al [1712.01368] Greljo, Stefanek [1802.04274] Fornal, Gadam, Grinstein [1812.01603]

Flavor non-universal model based on Pati-Salam group

Vector Leptoquark $U_1 = (\mathbf{3}, \mathbf{1}, 2/3)$

$$\mathcal{L}_U^{\text{int}} = \frac{g_U}{\sqrt{2}} \left(U_1^{\mu} J_{\mu}^U + \text{h.c.} \right)$$
$$J_{\mu}^U = \beta_L^{i\alpha} \left(\bar{q}_L^i \gamma_{\mu} \ell_L^{\alpha} \right) + \beta_R^{i\alpha} \left(\bar{d}_R^i \gamma_{\mu} e_R^{\alpha} \right)$$

$$|\beta_L^{b\tau}| = 1 \gg |\beta_L^{s\tau,b\mu}| \gg |\beta_L^{d\tau,s\mu}|$$

Approx, U(2)⁵ symmetry

• Dedicated search by CMS! [CMS-PAS-HIG-21-001]

$$\mathcal{L}_{G'}^{\text{int}} = g_{G'} \, G'^{a\,\mu} \, (\kappa_q^{ij} \, \bar{q}_L^i \, T^a \, \gamma_\mu \, q_L^j + \kappa_u^{ij} \, \bar{u}_R^i \, T^a \, \gamma_\mu \, u_R^j + \kappa_d^{ij} \, \bar{d}_R^i \, T^a \, \gamma_\mu \, d_R^j)$$

Di Luzio et al. [1808.00942] Baker et al. [1901.10480] Cornella et al. [2103.16558]

 $pp \to G' \to t\bar{t}$ $pp \to G' \to b\bar{b}$ (broad resonances)

• Recast of dijet & ditop searches

- broad $pp \rightarrow jj$ resonance
- CMS-PAS-TOP-18-013 [1801.02052] [1906.0320]
- Unfolded inv. Mass spectrum $d\sigma/dm_{t\bar{t}}$

Ditop searches provide the best direct limits on the scale of the 4321 model!

Vector-like fermions

4321 vector-like fermion $\chi = (Q, L)^T \sim (\mathbf{4}, \mathbf{1}, \mathbf{2}, 0)$ $\begin{cases} Q \sim (\mathbf{3}, \mathbf{2}, 1/6) & Q = \begin{pmatrix} U \\ D \end{pmatrix} \\ L \sim (\mathbf{1}, \mathbf{2}, -1/2) & L = \begin{pmatrix} N \\ E^{\pm} \end{pmatrix} \end{cases}$

✓ Important 4321 prediction:

 $m_L \sim 1$

$$-2 \text{ TeV} \qquad \begin{array}{c} b \\ s \\ \hline U_1 \\ \hline U_1 \\ \hline U_1 \\ \hline U_1 \\ b \\ B_2^0 \\ - \overline{B_2^0} \\ \end{array} \qquad b$$

vector-like lepton needs to be light!

Di Luzio et al. [1808.00942]

• These heavy leptons can be pair production at LHC via EW interactions $pp \rightarrow E^+E^-, N\bar{N}, E^{\pm}N$

3-body decay modes into 3rd gen.

• Very rich LHC pheno! $\begin{array}{ll} pp \to E^+E^- \to b\bar{b}b\bar{b}\,\tau\tau & pp \to N\bar{N} \to t\bar{t}b\bar{b}\,\tau\tau \\ pp \to E^+N \to t\bar{b}b\bar{b}\,\tau\tau & pp \to N\bar{N} \to t\bar{t}t\bar{b}\,\tau\nu \\ pp \to E^+E^- \to t\bar{t}b\bar{b}\,\nu\nu & pp \to N\bar{N} \to t\bar{t}t\bar{t}\,\nu\nu \end{array}$ Multi-top Signatures

Search for 4321 vector-like leptons

Cormier, DAF, Fuentes-Martin, Mikuni [CMS-PAS-B2G-21-004]

• Targets all-hadronic modes $t \rightarrow bqq, \ \tau \rightarrow qq\nu_{\tau}$

Event selection:

- 3 or more b-tagged jets
- 0,1 or 2 tau-tagged jets
- cut in missing transverse energy
- Analysis using Graph neural network (GNN)

Attention-based Cloud Network (ABCNet)

• LHC limits of 10-30 fb on EW production xsection

Beyond '4321' - Majorana DM

Extend with Dark Sector:
Baker, DAF, Trifinopoulos [2109.08689]

$$\mathbb{Z}_{2} \text{ odd states:} \begin{cases} X \sim (\mathbf{4}, \mathbf{1}, \mathbf{1}, +1/2) & X = \begin{pmatrix} \psi \\ \chi \end{pmatrix} \qquad \text{Colored partner} \\ S_{R} \sim (\mathbf{1}, \mathbf{1}, \mathbf{1}, 2) & Heavy fermion singlet \end{cases} \qquad \mathbb{D}_{X} = \begin{bmatrix} \psi \\ \chi \end{pmatrix} \qquad \mathbb{D}_{X} = \begin{bmatrix} 0 \\ \chi \end{pmatrix} \qquad \mathbb{D}_{X}$$

DM Relic abundance

- Co-annihilation into 3rd gen SM:
- $\chi_1 \ \psi \to SM_3 \ SM_3 \ \dots \ U_1$ leptoquark portal dominates! $\chi_1 \ \chi_2 \to SM_3 \ SM_3$

• Observed relic abundance fixes the mass splitting

$$\Delta_{\psi} = \frac{m_{\psi} - m_{\chi_1}}{m_{\chi_1}}$$

$$\Delta_{\psi} < 30\%$$
$$m_{\chi_1} \approx m_{\psi} \approx m_{\chi_2}$$

compressed spectrum!

Leptoquark Mass m_U [TeV]

Co-annhilation partner at the LHC

We can probe the DM mass at the LHC by searching for the colored partner.

• *Psionium* production at LHC:

• Pair production $pp \rightarrow \psi \bar{\psi}$

Challenging sigature:

 $2b + 2\tau + E_T^{\text{miss}} \implies \text{soft}$

Because of small mass splitting $m_\psi pprox m_{\chi_1}$

Currently, no LHC searches for this scenario....

Define the ratio between invisible and visible energies:

$$R_T = \frac{E_T^{\text{miss}}}{S_T}$$

• Search strategies: $2j_b + \tau_{had}\tau_{\ell} + E_T^{miss}$

"soft" pre-selection: $p_T(j, \tau_{had}) > 20 \,\text{GeV}$ $p_T(\ell) > 5 \,\text{GeV}$

i) Cut-based analysis: $R_T > 0.5$

ii) Multivariate: Boosted Decision Tree (BDT)

Low-level obs (p_T, η, ϕ) High-level obs $(S_T, E_T^{\text{miss}}, R_T, ...)$ Combination of Low and High obs.

LHC Limits for 4321 DM

• 95% CL excl. Limits at current lumis (140/fb)

Conclusions

LHC can efficiently test several crucial predictions from 4321 models:

 $U_1 = (\mathbf{3}, \mathbf{1}, 2/3)$ we should see deviations in ditau tails at most at HL-LHC.

 $G' = (\mathbf{8}, \mathbf{1}, 0)$ we should see a resonance in the high-mass ttbar spectrum.

LHC is already probing the fermion sector of 4321 We showed first limits on the **vector-like lepton** mass $m_L > 700 \, {
m GeV}$

LHC can also probe a Dark sector extensions of 4321 with Majorana DM. We presented a dedicated search strategy and extracted limits. $m_{\rm DM} > 600 \, {\rm GeV}$

Much Obliged!

Artwork by Sandbox Studio, Chicago with Corinne Mucha

- Bonus Slides -

Vector-like leptons

$$L = \begin{pmatrix} N \\ E^{\pm} \end{pmatrix}$$

Looks promising, but currently no heavy lepton search by ATLAS or CMS

Majorana Dark Matter & LFUV

Baker, DAF, Trifinopoulos 2109.08689

• Setup:
$$G_{\mathrm{NP}} \xrightarrow{\langle \Omega \rangle} G_{\mathrm{SM}} \otimes \mathbb{Z}_2$$
 or any other stabilizing symmetry
- Gauge sector: $U_1, Z', \dots, U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$ (mediates B-anomalies)
- Dark sector: \mathbb{Z}_2 odd vector-like fermion multiplet
 $X = \chi \oplus \psi \oplus \dots$ $\begin{cases} \chi \sim (\mathbf{1}, \mathbf{1}, 0) & \text{dark mater candidate} \\ \psi \sim (\mathbf{3}, \mathbf{1}, 2/3) & \text{coloured partner} \end{cases}$

• Dark sector Lagrangian for Majorana DM:

$$\mathcal{L}_{\text{eff}}^{\text{DS}} = \overline{X}(i\not\!\!D - m_X)X - \sum_n \frac{c_n^5}{\Lambda}\mathcal{O}_n^5$$

- d=5 operators: $\overline{X}FX$, $\overline{X}^cF'X$ where F,F' : d=2 operators in Ω

- $\Lambda~$ fermion number breaking scale $~~\Lambda^2 \gg \langle F \rangle ~, \langle F' \rangle ~, m_X^2$

For 4321 + Dirac DM see Guadagnoli, Reboud, Stangl [2005.10117]

After spontaneous symmetry breaking:

$$\mathcal{L}_{\text{mass}}^{\text{DS}} = -m_{\psi}\overline{\psi}\psi - m_{\chi}\overline{\chi}\chi - \frac{1}{2}\left(m_{L}\overline{\chi}_{L}^{c}\chi_{L} + m_{R}\overline{\chi}_{R}^{c}\chi_{R} + \text{h.c.}\right)$$

small Majorana masses: $m_L, \, m_R \sim \langle F'
angle / \Lambda \ll m_\chi \sim m_\psi$

 Mass eigenstates: "Pseudo-Dirac" fermion pair $\begin{cases} \chi_1 \simeq \frac{i}{\sqrt{2}} \left(\chi - \chi^c \right), & m_{\chi_1} \simeq m_{\chi} - \frac{m_L + m_R}{2} \\ \chi_2 \simeq \frac{1}{\sqrt{2}} \left(\chi + \chi^c \right), & m_{\chi_2} \simeq m_{\chi} + \frac{m_L + m_R}{2} \end{cases} \qquad m_{\psi} \approx m_{\chi_1} \approx m_{\chi_2} \\ \text{quasi-degenerate} \end{cases}$

 χ_1 lightest state is a Majorana DM candidate $\psi\,$ becomes a (coloured) coannhiliation partner when computing the relic abundance

DM relic abundance

• Dark sector interactions:

$$\mathcal{L}_{U}^{\text{int}} \supset \frac{g_{U}}{\sqrt{2}} U_{\mu} \left(\beta_{D_{1}} \,\overline{\chi_{1}} \gamma_{\mu} \psi + \beta_{D_{2}} \,\overline{\chi_{2}} \gamma_{\mu} \psi \right)$$
$$\mathcal{L}_{Z'}^{\text{int}} \supset \frac{g_{Z'}}{2\sqrt{6}} Z'_{\mu} \left(\zeta_{\psi} \,\overline{\psi} \gamma_{\mu} \psi + \zeta_{\chi} \,\overline{\chi_{1}} \gamma_{\mu} \chi_{2} \right)$$

Field	Type	SM QN	\mathbb{Z}_2
χ ₁	Majorana	(1, 1, 0)	-1
χ_2	Majorana	$({f 1},{f 1},0)$	-1
ψ	Dirac	$({\bf 3},{f 1},2/3)$	-1
Z'	Gauge	$({\bf 1},{\bf 1},0)$	+1
U_1	Gauge	$({\bf 3},{f 1},2/3)$	+1

$$\bar{\chi}_1 \gamma^{\mu} \chi_1$$
 currents vanish because $\bar{\chi}_i \gamma^{\mu} \chi_j = -\bar{\chi}_j \gamma^{\mu} \chi_i$
Model parameters: $m_{\psi}, m_{\chi_1}, m_U$ $g_U = (1.1 \pm 0.05)$

$$g_U = (1.1 \pm 0.2) \times \left(\frac{m_U}{2 \text{TeV}}\right)$$
 B-anomalies fit

• DM relic abundance: $DS DS \rightarrow SM SM$

Psionium

ROC curves: $m_{\psi} = 450 \,\text{GeV}$, $\Delta_{\psi} \approx 10\%$

