Fermilab

SBND-PRISM: Sampling Multiple Off-Axis Fluxes with the Same Detector

Marco Del Tutto

On behalf of the SBND Collaboration

ICHEP 2022 Conference

8th July 2022

The Short-Baseline Near Detector (SBND)

SBND is the near detector in the Short-Baseline Neutrino (SBN) program at Fermilab

- Three Liquid Argon Time Projection Chamber (LArTPC) detectors
- located along the Booster Neutrino Beamline (BNB) at Fermilab
 - Goals of the SBND:
 - Search for eV mass-scale sterile neutrinos oscillations
 - Study of neutrino-argon interactions at the GeV energy scale
 - Search for new/rare physics processes in the neutrino sector and beyond

ICHEP 2022

Booster Neutrino Beam

Booster Neutrino Beam

ICHEP 2022

Neutrino Flux at SBND

Fermilab

Neutrino Flux at SBND

Fermilab

$$\mathbf{v}_{\mu} \operatorname{Flux}$$

$$\pi^{+} \rightarrow \nu_{\mu} + \mu^{+}$$

$$K^{+} \rightarrow \nu_{\mu} + \mu^{+}$$

Two-body decays

$$\begin{array}{l} \nu_{e} \ \mathsf{Flux} \\ \mu^{+} \rightarrow \nu_{e} + \bar{\nu}_{\mu} + e^{+} \\ K^{+} \rightarrow \nu_{e} + e^{+} + \pi^{0} \\ K^{0}_{L} \rightarrow \nu_{e} + \pi^{-} + e^{+} \end{array}$$

Three-body decays

Different kinematics: two-body vs three body decay.

The flux of v_e has a larger angular spread than that of v_{μ} (at the same parent energy)

ICHEP 2022

SBND

The SBND Detector

Cosmic Ray Tagger CRT

SBND will be surrounded by scintillator strips to tag cosmic rays

The SBND Detector

2 Time Projection Chambers for a total of 4m x 4m x 5m

Photo Detection System: 120 PMTs 192 X-Arapucas

Fermilab

SBND is:

- very close (110 m) to the neutrino source
- not perfectly aligned with the neutrino beamline

The detector is traversed by neutrinos coming from different angles with respect to the beam axis.

SBND sees neutrinos from several off-axis angles (OAAs) (Off-axis angle is calculated w.r.t. target position)

The detector can be divided in several off-axis slices: $OAA \in [0.0^{\circ}, 0.2^{\circ})$ $OAA \in [0.2^{\circ}, 0.4^{\circ})$ $OAA \in [0.4^{\circ}, 0.6^{\circ})$ $OAA \in [0.6^{\circ}, 0.8^{\circ})$ $OAA \in [0.8^{\circ}, 1.0^{\circ})$ $OAA \in [1.0^{\circ}, 1.2^{\circ})$ $OAA \in [1.2^{\circ}, 1.4^{\circ})$ $OAA \in [1.4^{\circ}, 1.6^{\circ})$

The Off-Axis Angle (OAA)

We can select lower neutrino energies, and a more monochromatic beam, by going off-axis.

Precision Reaction Independent Spectrum Measurement (*)

Muon neutrino flux in each of the OAA regions 1e-7 / 50 MeV u_{μ} Neutrino Flux / 10⁶ POT / m² 6

0 -0.5 1.5 2.0 0.0 1.0

Neutrino Energy [GeV]

Neutrino events are divided based on the off-axis angle (OAA) region they fall in:

 $OAA \in [0.0^{\circ}, 0.2^{\circ})$ $OAA \in [0.2^{\circ}, 0.4^{\circ})$ $OAA \in [0.4^{\circ}, 0.6^{\circ})$ $OAA \in [0.6^{\circ}, 0.8^{\circ})$ $OAA \in [0.8^{\circ}, 1.0^{\circ})$ $OAA \in [1.0^{\circ}, 1.2^{\circ})$ $OAA \in [1.2^{\circ}, 1.4^{\circ})$ $OAA \in [1.4^{\circ}, 1.6^{\circ})$

Fermilab

The v_{μ} energy distribution is affected by the off-axis position

SBND-PRISM - Flux

Neutrinos come from charged mesons, focused by the magnetic horns in the beamline.

The flux is maximal on axis, and decreases moving away from the beam center.

Muon-neutrinos CC Events

peak coincident with the on-axis position

Cosmic Ray Tagger Data

⊦0

SBND-PRISM - Applications

Benefits of SBND-PRISM:

- Interaction Model Constraint
- Neutrino Oscillations
- Dark Matter Searches
- Study Energy Dependance of Cross Section
- Muon-to-Electron Neutrino Cross Section
- Study Neutrino Energy / Lepton Kinematics
- and more...

SBND-PRISM - Interaction Model Constraint

The PRISM feature of SBND opens up new analyses:

- Can make **neutrino cross-section measurements** over a peak/mean energy that spans over ~200 MeV energy difference (test of models/generators).
- ν_{μ} to ν_{e} cross-section ratio: going off-axis, the increase in ν_e to ν_μ flux ratio combined with a choice of kinematics where ν_e to ν_μ differences are prominent should allow us to measure the ν_e/ν_μ cross section (can study lepton mass effects).

v-Ar CC Events

SBND-PRISM - Interaction Model Constraint

- Neutral Current events with π^0 in the final state can mimic a ν_e interaction.
- These events are a background for many physics analyses.
- PRISM provides a natural way to reduce background by moving off-axis.
- Note that we expect high event statistics in all off-axis regions.

ICHEP 2022

SBND-PRISM - Sterile Neutrino Oscillations

Goal of the SBN program is to search for eV mass-scale sterile neutrino oscillations

$$\frac{N_{FD}}{N_{ND}} = \frac{\propto \phi_{FD} \otimes \sigma \otimes P_{osc}}{\propto \phi_{ND} \otimes \sigma}$$

Can SBND-PRISM improve the sensitivity to sterile-neutrino oscillations?

Far Detector

SBND-PRISM - Sterile Neutrino Oscillations

SBND-PRISM can potentially improve the SBN sensitivities to sterile neutrino oscillations

Two possibilities to use the PRISM technique:

Instead of treating SBND as a single detector, we can treat it as multiple detectors at different off-axis positions and include those in the **SBN oscillation fit**. Since the the energy spectra are different the neutrino interaction model will be over constrained.

SBND-PRISM - Sterile Neutrino Oscillations - 1

In a v_e appearance search:

- the beam intrinsic v_e are a background
- the signal v_e come from oscillated v_{μ}

The v_{μ} and v_{e} fluxes behave differently going off-axis, giving rise to different signal-to-background ratios which constrain systematics The mismatch between v_{μ} flux and v_{e} contamination on different off-axis positions may be an opportunity to do physics

SBND-PRISM - Sterile Neutrino Oscillations

SBND-PRISM can potentially improve the SBN sensitivities to sterile neutrino oscillations

Two possibilities to use the PRISM technique:

Instead of treating SBND as a single detector, we can treat it as multiple detectors at different off-axis positions and include those in the **SBN oscillation fit**. Since the the energy spectra are different the neutrino interaction model will be over constrained.

2

Can linearly combine the measurements the different off-axis positions to reproduce a given choice of incident neutrino flux. Can match the ICARUS (far detector) oscillated spectrum in SBND (near detector).

SBND-PRISM - Sterile Neutrino Oscillations - 2

Can we make the two fluxes similar?

SBND-PRISM - Sterile Neutrino Oscillations - 2

ICHEP 2022

Light dark matter (sub-GeV) that is coupled to the Standard Model via a dark photon. The dark photons can be produced by neutral meson decays (pions, etas) in the target, and then decay to the dark matter.

Phys.Rev.D 100 (2019) 9, 095010

Fermilab

Light dark matter (sub-GeV) that is coupled to the Standard Model via a dark photon. The dark photons can be produced by neutral meson decays (pions, etas) in the target, and then decay to the dark matter.

Phys.Rev.D 100 (2019) 9, 095010

The dark matter can then travel to SBND and, through the dark photon, scatter off electrons in the detector.

Background

Neutrino-electron elastic scattering. Neutrinos come from two-body decays of charged (focused) mesons.

Signal

Elastic scattering electron events. Dark matter comes from three-body decays of neutral (unfocused) mesons.

Background

Neutrino-electron elastic scattering. Neutrinos come from two-body decays of charged (focused) mesons.

Signal

Elastic scattering electron events. Dark matter comes from three-body decays of neutral (unfocused) mesons.

Background

Neutrino-electron elastic scattering. Neutrinos come from two-body decays of charged (focused) mesons.

SBND-PRIMS: Neutrinos (background events) **decrease** with the off axis angle

Signal

Elastic scattering electron events. Dark matter comes from three-body decays of neutral (unfocused) mesons.

Dark matter (signal) events come from **unfocused** neutral mesons

Background

Neutrino-electron elastic scattering. Neutrinos come from two-body decays of charged (focused) mesons.

SBND-PRIMS: Neutrinos (background events) **decrease** with the off axis angle

Fermilab

Signal

Elastic scattering electron events. Dark matter comes from three-body decays of neutral (unfocused) mesons.

Dark matter (signal) events come from **unfocused** neutral mesons

Conclusions

- The closeness of SBND to the neutrino source, combined with the
- simultaneously, no need to move the detector.
- SBND-PRISM opens up new possibilities: can potentially constrain oscillation analysis and other BSM searches.

abundance of statistics allows us to use this "free" PRISM feature.

Contrary to DUNE-PRISM, SBND can take data on all the off-axis regions

interaction modeling, improve oscillation fits, perform an SBND-only

Conclusions

